ashishkgpian commited on
Commit
d7a8295
·
verified ·
1 Parent(s): 181e58f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -141
README.md CHANGED
@@ -1,199 +1,147 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - biobert
5
+ - medical-nlp
6
+ - icd-9
7
+ - classification
8
+ - healthcare
9
+ license: apache-2.0
10
+ language:
11
+ - en
12
+ base_model:
13
+ - dmis-lab/biobert-v1.1
14
+ pipeline_tag: text-classification
15
  ---
16
 
17
+ # Model Card for BioBERT Fine-tuned on MIMIC-3 for ICD-9 Code Classification
 
 
 
 
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
+ This is a BioBERT model fine-tuned on the MIMIC-3 (Medical Information Mart for Intensive Care) corpus specifically for ICD-9 code classification. The model is designed to predict medical diagnostic codes based on Electronic Health Record (EHR) and symptom text inputs.
 
 
24
 
25
+ - **Developed by:** [Researcher/Institution Name - to be added]
26
+ - **Model type:** Transformer-based medical language model (BioBERT)
27
+ - **Language(s):** English (Medical Domain)
28
+ - **License:** [License to be specified]
29
+ - **Finetuned from model:** BioBERT base model
 
 
30
 
31
+ ### Model Sources
32
 
33
+ - **Repository:** [GitHub/Model Repository Link - to be added]
34
+ - **Paper:** [Research Paper Link - to be added]
 
 
 
35
 
36
  ## Uses
37
 
 
 
38
  ### Direct Use
39
 
40
+ The primary use of this model is to automatically classify medical conditions by predicting relevant ICD-9 diagnostic codes from clinical text, such as electronic health records, medical notes, or symptom descriptions.
 
 
41
 
42
+ ### Downstream Use
43
 
44
+ This model can be integrated into:
45
+ - Clinical decision support systems
46
+ - Medical coding automation
47
+ - Electronic health record (EHR) analysis tools
48
+ - Healthcare informatics research
49
 
50
  ### Out-of-Scope Use
51
 
52
+ - The model should not be used for direct medical diagnosis without professional medical oversight
53
+ - It is not intended to replace clinical judgment
54
+ - Performance may vary with text outside the medical domain or significantly different from the training corpus
55
 
56
  ## Bias, Risks, and Limitations
57
 
58
+ - The model's performance is limited to the medical conditions and coding patterns in the MIMIC-3 dataset
59
+ - Potential biases from the original training data may be present
60
+ - Accuracy can be affected by variations in medical terminology, writing styles, and complex medical cases
61
 
62
  ### Recommendations
63
 
64
+ - Validate model predictions with medical professionals
65
+ - Use as a supportive tool, not a replacement for expert medical assessment
66
+ - Regularly evaluate performance on new datasets
67
+ - Be aware of potential demographic or contextual biases in the predictions
68
 
69
  ## How to Get Started with the Model
70
 
71
+ ```python
72
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
73
+ import torch
74
+
75
+ # Load the model and tokenizer
76
+ model = AutoModelForSequenceClassification.from_pretrained('model_path')
77
+ tokenizer = AutoTokenizer.from_pretrained('model_path')
78
+
79
+ # Example prediction function (similar to the provided get_predictions function)
80
+ def predict_icd9_codes(input_text, threshold=0.8):
81
+ # Tokenize input
82
+ inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512, padding='max_length')
83
+
84
+ # Get model predictions
85
+ with torch.no_grad():
86
+ outputs = model(**inputs)
87
+ predictions = torch.sigmoid(outputs.logits)
88
+
89
+ # Filter predictions above threshold
90
+ predicted_codes = [model.config.id2label[i] for i in (predictions > threshold).nonzero()[:, 1]]
91
+
92
+ return predicted_codes
93
+ ```
94
 
95
  ## Training Details
96
 
97
  ### Training Data
98
 
99
+ - **Dataset:** MIMIC-3 Corpus
100
+ - **Domain:** Medical/Clinical text
101
+ - **Content:** Electronic Health Records (EHR)
102
 
103
  ### Training Procedure
104
 
105
+ #### Preprocessing
106
+ - Text tokenization
107
+ - Maximum sequence length: 512 tokens
108
+ - Padding to uniform length
109
+ - Potential text normalization techniques
 
110
 
111
  #### Training Hyperparameters
112
+ - **Base Model:** BioBERT
113
+ - **Training Regime:** Fine-tuning
114
+ - **Precision:** [Specify training precision, e.g., mixed precision]
 
 
 
 
 
115
 
116
  ## Evaluation
117
 
 
 
118
  ### Testing Data, Factors & Metrics
119
 
120
  #### Testing Data
121
+ - Held-out subset of MIMIC-3 corpus
122
+ - Diverse medical cases and documentation styles
 
 
 
 
 
 
 
 
123
 
124
  #### Metrics
125
+ - Precision
126
+ - Recall
127
+ - F1-Score
128
+ - Multi-label classification metrics
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
  ## Environmental Impact
131
 
132
+ - Estimated carbon emissions to be calculated
133
+ - Compute details to be specified
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
 
135
+ ## Technical Specifications
136
 
137
+ ### Model Architecture
138
+ - **Base Model:** BioBERT
139
+ - **Task:** Multi-label ICD-9 Code Classification
140
 
141
+ ## Citation
142
 
143
+ [Citation information to be added when research is published]
144
 
145
+ ## More Information
146
 
147
+ For more details about the model's development, performance, and usage, please contact the model developers.