asi commited on
Commit
5293fda
·
1 Parent(s): db32075

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -0
README.md CHANGED
@@ -1,5 +1,128 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
 
5
 
 
1
  ---
2
  license: apache-2.0
3
+
4
+ model-index:
5
+ - name: asi/albert-act-base
6
+ results:
7
+ - task:
8
+ type: text-classification
9
+ name: CoLA
10
+ dataset:
11
+ type: glue
12
+ name: CoLA # General Language Understanding Evaluation benchmark (GLUE)
13
+ split: cola
14
+ metrics:
15
+ - type: matthews_correlation
16
+ value: 33.8
17
+ name: Matthew's Corr
18
+ - task:
19
+ type: text-classification
20
+ name: SST-2
21
+ dataset:
22
+ type: glue
23
+ name: SST-2 # The Stanford Sentiment Treebank
24
+ split: sst2
25
+ metrics:
26
+ - type: accuracy
27
+ value: 88.6
28
+ name: Accuracy
29
+ - task:
30
+ type: text-classification
31
+ name: MRPC
32
+ dataset:
33
+ type: glue
34
+ name: MRPC # Microsoft Research Paraphrase Corpus
35
+ split: mrpc
36
+ metrics:
37
+ - type: accuracy
38
+ value: 79.4
39
+ name: Accuracy
40
+ - type: f1
41
+ value: 85.2
42
+ name: F1
43
+ - task:
44
+ type: text-similarity
45
+ name: STS-B
46
+ dataset:
47
+ type: glue
48
+ name: STS-B # Semantic Textual Similarity Benchmark
49
+ split: stsb
50
+ metrics:
51
+ - type: spearmanr
52
+ value: 81.2
53
+ name: Spearman Corr
54
+ - type: pearsonr
55
+ value: 82.7
56
+ name: Pearson Corr
57
+ - task:
58
+ type: text-classification
59
+ name: QQP
60
+ dataset:
61
+ type: glue
62
+ name: QQP # Quora Question Pairs
63
+ split: qqp
64
+ metrics:
65
+ - type: f1
66
+ value: 67.8
67
+ name: F1
68
+ - type: accuracy
69
+ value: 87.4
70
+ name: Accuracy
71
+ - task:
72
+ type: text-classification
73
+ name: MNLI-m
74
+ dataset:
75
+ type: glue
76
+ name: MNLI-m # MultiNLI Matched
77
+ split: mnli_matched
78
+ metrics:
79
+ - type: accuracy
80
+ value: 79.5
81
+ name: Accuracy
82
+ - task:
83
+ type: text-classification
84
+ name: MNLI-mm
85
+ dataset:
86
+ type: glue
87
+ name: MNLI-mm # MultiNLI Matched
88
+ split: mnli_mismatched
89
+ metrics:
90
+ - type: accuracy
91
+ value: 78.5
92
+ name: Accuracy
93
+ - task:
94
+ type: text-classification
95
+ name: QNLI
96
+ dataset:
97
+ type: glue
98
+ name: QNLI # Question NLI
99
+ split: qnli
100
+ metrics:
101
+ - type: accuracy
102
+ value: 88.3
103
+ name: Accuracy
104
+ - task:
105
+ type: text-classification
106
+ name: RTE
107
+ dataset:
108
+ type: glue
109
+ name: RTE # Recognizing Textual Entailment
110
+ split: rte
111
+ metrics:
112
+ - type: accuracy
113
+ value: 61.9
114
+ name: Accuracy
115
+ - task:
116
+ type: text-classification
117
+ name: WNLI
118
+ dataset:
119
+ type: glue
120
+ name: WNLI # Winograd NLI
121
+ split: wnli
122
+ metrics:
123
+ - type: accuracy
124
+ value: 65.1
125
+ name: Accuracy
126
  ---
127
 
128