File size: 5,814 Bytes
0a6a1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a9443
0a6a1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# developer: Taoshidev
# Copyright © 2023 Taoshi, LLC

import numpy as np
import tensorflow
from numpy import ndarray
import xgboost as xgb


class BaseMiningModel:
    def __init__(self, features):
        self.neurons = [[50,0]]
        self.features = features
        self.loaded_model = None
        self.window_size = 100
        self.model_dir = None
        self.batch_size = 16
        self.learning_rate = 0.01

    def set_neurons(self, neurons):
        self.neurons = neurons
        return self

    def set_window_size(self, window_size):
        self.window_size = window_size
        return self

    def set_model_dir(self, model, stream_id=None):
        if model is None and stream_id is not None:
            # self.model_dir = f'mining_models/{stream_id}.keras'
            self.model_dir = f'./mining_models/{stream_id}.model'
        elif model is not None:
            self.model_dir = model
        else:
            raise Exception("stream_id is not provided to define model")
        return self

    def set_batch_size(self, batch_size):
        self.batch_size = batch_size
        return self

    def set_learning_rate(self, learning_rate):
        self.learning_rate = learning_rate
        return self

    def load_model(self):
        # self.loaded_model = tensorflow.keras.models.load_model(self.model_dir)
        self.loaded_model = xgb.Booster()
        self.loaded_model.load_model(self.model_dir)
        return self

    def train(self, data: ndarray)#, epochs: int = 100):
        try:
            model = tensorflow.keras.models.load_model(self.model_dir)
        except OSError:
            model = None

        output_sequence_length = 100

        if model is None:
            model = xgb.XGBRegressor(random_state = 1)

            # model = tensorflow.keras.models.Sequential()

            # if len(self.neurons) > 1:
            #     model.add(tensorflow.keras.layers.LSTM(self.neurons[0][0],
            #                                            input_shape=(self.window_size, self.features),
            #                                            return_sequences=True))
            #     for ind, stack in enumerate(self.neurons[1:]):
            #         return_sequences = True
            #         if ind+1 == len(self.neurons)-1:
            #             return_sequences = False
            #         model.add(tensorflow.keras.layers.Dropout(stack[1]))
            #         model.add(tensorflow.keras.layers.LSTM(stack[0], return_sequences=return_sequences))
            # else:
            #     model.add(tensorflow.keras.layers.LSTM(self.neurons[0][0],
            #                                            input_shape=(self.window_size, self.features)))

            # model.add(tensorflow.keras.layers.Dense(1))

            # optimizer = tensorflow.keras.optimizers.Adam(learning_rate=self.learning_rate)
            # model.compile(optimizer=optimizer, loss='mean_squared_error')

        # X_train, Y_train = [], []

        # X_train_data = data
        # Y_train_data = data.T[0].T

        # for i in range(len(Y_train_data) - output_sequence_length - self.window_size):
        #     target_sequence = Y_train_data[i+self.window_size+output_sequence_length:i+self.window_size+output_sequence_length+1]
        #     Y_train.append(target_sequence)

        # for i in range(len(X_train_data) - output_sequence_length - self.window_size):
        #     input_sequence = X_train_data[i:i+self.window_size]
        #     X_train.append(input_sequence)

        # X_train = np.array(X_train)
        # Y_train = np.array(Y_train)

        # X_train = tensorflow.convert_to_tensor(np.array(X_train, dtype=np.float32))
        # Y_train = tensorflow.convert_to_tensor(np.array(Y_train, dtype=np.float32))

        X_train, Y_train = [], []

        target = data[:, 0]   # First column for the target
        # X_train = data[:, 1:]  # All other columns for features


        #for i in range(len(data) - self.window_size):
        #    input_sequence = data[i:i + self.window_size]
        #    target_value = data[i + self.window_size]

         #   X_train.append(input_sequence)
         #   Y_train.append(target_value)

        for i in range(len(data) - 1):
            input_sequence = data[i]
            target_value = target[i+1]
            X_train.append(input_sequence)
            Y_train.append(target_value)


        X_train = np.array(X_train)
        Y_train = np.array(Y_train)

        X_train = tensorflow.convert_to_tensor(np.array(X_train, dtype=np.float32))
        Y_train = tensorflow.convert_to_tensor(np.array(Y_train, dtype=np.float32))



        # early_stopping = tensorflow.keras.callbacks.EarlyStopping(monitor="loss", patience=10,

        #                                                           restore_best_weights=True)

        model.fit(X_train, Y_train)#, epochs=epochs, batch_size=self.batch_size, callbacks=[early_stopping])
        model.save_model(self.model_dir)

    def predict(self, data: ndarray):
        predictions = []

        window_data = data[-1:]
       # window_data = window_data.reshape(1, 1, self.features)
        dtest = xgb.DMatrix(window_data)
        predicted_value = self.loaded_model.predict(dtest)
        predictions.append(predicted_value)

        return predictions

    @staticmethod
    def base_model_dataset(samples):
        min_cutoff = 0

        cutoff_close = samples.tolist()[1][min_cutoff:]
        cutoff_high = samples.tolist()[2][min_cutoff:]
        cutoff_low = samples.tolist()[3][min_cutoff:]
        cutoff_volume = samples.tolist()[4][min_cutoff:]

        return np.array([cutoff_close,
                                 cutoff_high,
                                 cutoff_low,
                                 cutoff_volume]).T