|
from typing import Any, Mapping |
|
from .configuration_arabichar import ArabiCharModelConfig |
|
from transformers import PreTrainedModel |
|
import torch |
|
import torch.nn as nn |
|
|
|
class ArabiCharModel(nn.Module): |
|
def __init__(self, config): |
|
super(ArabiCharModel, self).__init__() |
|
|
|
self.conv1 = nn.Conv2d(1, config.conv1_channels, kernel_size=5, padding=4) |
|
self.conv2 = nn.Conv2d(config.conv1_channels, config.conv1_channels, kernel_size=5) |
|
self.conv3 = nn.Conv2d(config.conv1_channels, config.conv1_channels, kernel_size=5) |
|
self.pool1 = nn.MaxPool2d(2) |
|
self.bn1 = nn.BatchNorm2d(config.conv1_channels) |
|
|
|
self.conv4 = nn.Conv2d(config.conv1_channels, config.conv2_channels, kernel_size=5, padding=4) |
|
self.conv5 = nn.Conv2d(config.conv2_channels, config.conv2_channels, kernel_size=5) |
|
self.conv6 = nn.Conv2d(config.conv2_channels, config.conv2_channels, kernel_size=5) |
|
self.pool2 = nn.MaxPool2d(2) |
|
self.bn2 = nn.BatchNorm2d(config.conv2_channels) |
|
|
|
self.fc1 = nn.Linear(config.conv2_channels * 5 * 5, config.fc1_units) |
|
self.fc2 = nn.Linear(config.fc1_units, config.fc1_units) |
|
self.dropout = nn.Dropout(config.dropout_prob) |
|
self.fc3 = nn.Linear(config.fc1_units, config.num_classes) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.conv1(x)) |
|
x = torch.relu(self.conv2(x)) |
|
x = torch.relu(self.conv3(x)) |
|
x = self.pool1(x) |
|
x = self.bn1(x) |
|
|
|
x = torch.relu(self.conv4(x)) |
|
x = torch.relu(self.conv5(x)) |
|
x = torch.relu(self.conv6(x)) |
|
x = self.pool2(x) |
|
x = self.bn2(x) |
|
|
|
x = x.view(x.size(0), -1) |
|
x = torch.relu(self.fc1(x)) |
|
x = torch.relu(self.fc2(x)) |
|
x = self.dropout(x) |
|
return torch.softmax(self.fc3(x), dim=1) |
|
|
|
class ArabiCharModelForImageClassification(PreTrainedModel): |
|
config_class = ArabiCharModelConfig |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = ArabiCharModel(config) |
|
|
|
def forward(self, tensor, labels=None): |
|
logits = self.model(tensor) |
|
if labels is not None: |
|
loss = torch.nn.cross_entropy(logits, labels) |
|
return {"loss": loss, "logits": logits} |
|
|
|
return {"logits": logits} |
|
|
|
def load_state_dict(self, model_name): |
|
self.model.load_state_dict(torch.load(model_name)) |
|
|