Abdul Fatir Ansari
commited on
Commit
·
8aa33a2
1
Parent(s):
bbe123c
Update README
Browse files
README.md
CHANGED
@@ -10,16 +10,33 @@ tags:
|
|
10 |
- time-series
|
11 |
---
|
12 |
|
13 |
-
# Chronos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
Pre-release of Chronos-Bolt pretrained time series forecasting models.
|
16 |
|
17 |
## Usage
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
```
|
22 |
-
pip install
|
23 |
```
|
24 |
|
25 |
```python
|
@@ -27,21 +44,19 @@ from autogluon.timeseries import TimeSeriesPredictor, TimeSeriesDataFrame
|
|
27 |
|
28 |
df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
|
29 |
|
30 |
-
|
31 |
df,
|
32 |
hyperparameters={
|
33 |
-
"Chronos":
|
34 |
-
{"model_path": "autogluon/chronos-bolt-base"},
|
35 |
-
]
|
36 |
},
|
37 |
-
).predict(
|
38 |
-
df
|
39 |
)
|
|
|
|
|
40 |
```
|
41 |
|
42 |
## Citation
|
43 |
|
44 |
-
If you find Chronos models useful for your research, please consider citing the associated [paper](https://arxiv.org/abs/2403.07815):
|
45 |
|
46 |
```
|
47 |
@article{ansari2024chronos,
|
|
|
10 |
- time-series
|
11 |
---
|
12 |
|
13 |
+
# Chronos⚡️-Base
|
14 |
+
|
15 |
+
Chronos⚡️ (read: Chronos-Bolt) is a family of pretrained time series forecasting models which can be used for zero-shot forecasting. Chronos⚡️ models are based on the [T5 architecture](https://arxiv.org/abs/1910.10683) and are available in the following sizes.
|
16 |
+
|
17 |
+
|
18 |
+
<div align="center">
|
19 |
+
|
20 |
+
| Model | Parameters | Based on |
|
21 |
+
| ---------------------------------------------------------------------- | ---------- | ---------------------------------------------------------------------- |
|
22 |
+
| [**chronos-bolt-tiny**](https://huggingface.co/autogluon/chronos-bolt-tiny) | 9M | [t5-efficient-tiny](https://huggingface.co/google/t5-efficient-tiny) |
|
23 |
+
| [**chronos-bolt-mini**](https://huggingface.co/autogluon/chronos-bolt-mini) | 21M | [t5-efficient-mini](https://huggingface.co/google/t5-efficient-mini) |
|
24 |
+
| [**chronos-bolt-small**](https://huggingface.co/autogluon/chronos-bolt-small) | 48M | [t5-efficient-small](https://huggingface.co/google/t5-efficient-small) |
|
25 |
+
| [**chronos-bolt-base**](https://huggingface.co/autogluon/chronos-bolt-base) | 205M | [t5-efficient-base](https://huggingface.co/google/t5-efficient-base) |
|
26 |
+
|
27 |
+
</div>
|
28 |
|
|
|
29 |
|
30 |
## Usage
|
31 |
|
32 |
+
> [!WARNING]
|
33 |
+
> Chronos⚡️ models will be available in the next stable release of AutoGluon, so the following instructions will only work once AutoGluon 1.2 has been released.
|
34 |
+
|
35 |
+
|
36 |
+
A minimal example showing how to perform zero-shot inference using Chronos⚡️ with AutoGluon:
|
37 |
|
38 |
```
|
39 |
+
pip install autogluon
|
40 |
```
|
41 |
|
42 |
```python
|
|
|
44 |
|
45 |
df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
|
46 |
|
47 |
+
predictor = TimeSeriesPredictor(prediction_length=48).fit(
|
48 |
df,
|
49 |
hyperparameters={
|
50 |
+
"Chronos": {"model_path": "autogluon/chronos-bolt-base"},
|
|
|
|
|
51 |
},
|
|
|
|
|
52 |
)
|
53 |
+
|
54 |
+
predictions = predictor.predict(df)
|
55 |
```
|
56 |
|
57 |
## Citation
|
58 |
|
59 |
+
If you find Chronos or Chronos⚡️ models useful for your research, please consider citing the associated [paper](https://arxiv.org/abs/2403.07815):
|
60 |
|
61 |
```
|
62 |
@article{ansari2024chronos,
|