File size: 1,873 Bytes
1f89153 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: deberta-v3-xsmall-Label_B-768-epochs-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-xsmall-Label_B-768-epochs-3
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1073
- Accuracy: 0.9741
- F1: 0.9741
- Precision: 0.9755
- Recall: 0.9741
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.12 | 0.9994 | 1279 | 0.2452 | 0.9352 | 0.9350 | 0.9420 | 0.9352 |
| 0.0496 | 1.9996 | 2559 | 0.1073 | 0.9741 | 0.9741 | 0.9755 | 0.9741 |
| 0.0294 | 2.9982 | 3837 | 0.1162 | 0.9739 | 0.9739 | 0.9751 | 0.9739 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.5.0+cu124
- Datasets 2.18.0
- Tokenizers 0.19.1
|