File size: 2,612 Bytes
babce44
 
 
 
 
 
f405128
babce44
f405128
 
 
 
 
 
 
 
babce44
 
 
 
 
612c171
babce44
f405128
 
babce44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612c171
 
 
 
babce44
 
 
 
 
 
5fd9607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: ayatsuri/academic-ai-detector
  results: []
datasets:
- NicolaiSivesind/human-vs-machine
metrics:
- accuracy
- recall
- precision
- f1
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# ayatsuri/academic-ai-detector

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on [NicolaiSivesind/human-vs-machine](https://huggingface.co/datasets/NicolaiSivesind/human-vs-machine) dataset.
It achieves the following best results on the evaluation set:
- Train Loss: 0.0910
- Validation Loss: 0.0326
- Train Accuracy: 0.9937
- Train Recall: 0.9927
- Train Precision: 0.9947
- Train F1: 0.9937
- Validation Accuracy: 0.99
- Validation Recall: 0.986
- Validation Precision: 0.9940
- Validation F1: 0.9900
- Epoch: 0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2625, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Set        | Loss   | Accuracy | Recall | Precision | F1     |
|:----------:|:------:|:--------:|:------:|:---------:|:------:|
| Train      | 0.0910 | 0.9937   | 0.9927 | 0.9947    | 0.9937 |
| Validation | 0.0326 | 0.99     | 0.986  | 0.9940    | 0.9900 |

### Framework versions

- Transformers 4.41.1
- TensorFlow 2.15.0
- Datasets 2.19.1
- Tokenizers 0.19.1

## Citation

Please use the following citation:

```
@misc {ayatsuri24,
  author    = { Bagas Nuriksan },
  title     = { Academic AI Detector },
  url       = { https://huggingface.co/ayatsuri/academic-ai-detector }
  year      = 2024,
  publisher = { Hugging Face }
}
```