File size: 6,573 Bytes
64e4ec9
d80a34b
 
 
f15043f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808c504
 
f15043f
 
 
 
 
 
 
 
 
50bae1e
41424df
82f292d
2b6dd0b
 
 
 
cee3688
 
 
4ffe27d
0f2dbf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee3688
1b7b0af
cee3688
82f292d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5894cc0
 
82f292d
 
 
 
 
 
 
 
 
5894cc0
 
82f292d
 
 
 
 
 
 
 
5894cc0
 
82f292d
 
 
 
 
 
 
 
59d7e10
 
 
 
 
495236f
59d7e10
 
b5c7276
 
 
 
59d7e10
 
b5c7276
59d7e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82f292d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
model_type: GPT2LMHeadModel
architectures:
- GPT2LMHeadModel
model_filename: pytorch_model.bin
config:
  activation_function: gelu_new
  attn_pdrop: 0.1
  bos_token_id: 50256
  embd_pdrop: 0.1
  eos_token_id: 50256
  initializer_range: 0.02
  layer_norm_epsilon: 0.00001
  n_ctx: 1024
  n_embd: 1024
  n_head: 16
  n_layer: 24
  n_positions: 1024
  n_special: 0
  predict_special_tokens: true
  resid_pdrop: 0.1
  summary_activation: null
  summary_first_dropout: 0.1
  summary_proj_to_labels: true
  summary_type: cls_index
  summary_use_proj: true
  task_specific_params:
    text-generation:
      do_sample: true
      max_length: 50
  vocab_size: 50257
  hidden_dim: 2048
  input_dim: 768
  output_dim: 50257
license: apache-2.0
datasets:
- vicgalle/alpaca-gpt4
language:
- en
metrics:
- bleu
- accuracy
library_name: transformers
pipeline_tag: text-generation
---

# QNetworkGPT2: Reinventing Text Generation with AI πŸ“πŸ€–

![Text Generation](https://static.vecteezy.com/system/resources/previews/023/477/674/non_2x/ai-generative-blue-red-ink-splash-illustration-free-png.png)

---
## Hyperameters used

Here's a consolidated list of hyperparameters for your QNetworkGPT2 RL model:

- `input_dim`: Input dimension for the RL agent.
- `output_dim`: Output dimension for the RL agent.
- `hidden_dim`: Hidden dimension for the RL agent.
- `num_episodes`: Number of training episodes.
- `generate_interval`: Interval for text generation during training.
- `load_path`: Path to load a pre-trained model.
- `model_name`: GPT-2 model architecture name.
- `max_new_tokens`: Maximum new tokens allowed during text generation.
- `max_length`: Maximum sequence length for input data.
- `sequence_length`: Length of sequences in the dataset.
- `batch_size`: Batch size for training.
- `learning_rate`: Learning rate for optimization.
- `gamma`: Discount factor for rewards.
- `clip_epsilon`: Epsilon value for policy loss clipping.
- `entropy_beta`: Beta value for entropy regularization.
- `epsilon_start`: Initial epsilon for epsilon-greedy exploration.
- `epsilon_end`: Minimum epsilon value.
- `epsilon_decay`: Epsilon decay rate.
- `heuristic_fn`: Heuristic function for action selection.
- `max_new_tokens`: Maximum new tokens allowed during text generation.
- `save_path`: Path to save the trained model.

Researchers can use these hyperparameters to configure and train their QNetworkGPT2 RL models effectively for text generation tasks.
---
---

## Overview

QNetworkGPT2 is an extraordinary AI model that marries Reinforcement Learning (RL) with the power of the GPT-2 language model to create impressive text generation experiences. πŸš€

## Capabilities

### 1. Ultimate Flexibility
- Craft RL agents for diverse text generation tasks.
- Customize hyperparameters effortlessly.
- Harness the brilliance of GPT-2 for text generation magic.

### 2. Q-Network for Mastery
- Unleash the QNetwork class for Q-learning in text generation.
- Revel in its multi-layer neural network architecture with residual connections and strategic dropout rates.
- Empower your model with heuristic functions for ingenious action selection.

### 3. PPO Algorithm
- Embrace the Proximal Policy Optimization (PPO) algorithm for supreme policy updates.
- Sculpt policies with the wisdom of experiences and rewards.

### 4. Tailored RL Environment
- Tailor-make your own RL environment for text generation quests.
- Reward the AI with BLEU scores and semantic similarity.
- Dance through text generation steps with episode-ending conditions.

### 5. Replay Buffer and Memory
- Store and summon experiences with grace in a replay buffer.
- Command a replay memory class to oversee experiences like a pro.

### 6. Epsilon-Greedy Exploration
- The agent employs epsilon-greedy exploration for marvelous discoveries.

### 7. Target Network for Rock-Solid Stability
- Keep target networks in check for unwavering stability during Q-learning escapades.
  
---

## How It Operates

1. Birth an RL Agent, fine-tuned to your desires.
2. Train the agent using PPO magic or embrace Q-learning for epic journeys.
3. Birth text from input data with the policy network.
4. Evaluate the text's quality using BLEU and semantic beauty.
5. Commence your custom RL environment for text generation marvels.

---

## Uniqueness and Epicness

- The union of RL and GPT-2 for text generation mastery.
- Advanced text tasks unfold gracefully with QNetwork and its heuristic powers.
- The limitless canvas to create RL agents for every text challenge.
- Rewarding text quality and semantic harmony with AI-calculated rewards.
- The blueprint for a customizable and adaptable RL text generation paradise.

---

## Get Started Now

1. Forge your QNetworkGPT2 with personalized hyperparameters.
2. Unleash the potential with RL-based training.
3. Conjure text aligned with your task and dream.
4. Assess the text with metrics and demands.
5. Fine-tune and enhance for your text generation quest.

---
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("ayjays132/QNetworkGPT2")

model = AutoModelForCausalLM.from_pretrained("ayjays132/QNetworkGPT2")

# Set the EOS token as the padding token
tokenizer.pad_token = tokenizer.eos_token

# Initialize a conversation history
conversation_history = []

# Start a conversation loop
while True:
    # Get user input
    user_input = input("You: ")

    # Add user input to the conversation history
    conversation_history.append(user_input)

    # Concatenate the conversation strings
    conversation_text = " ".join(conversation_history)

    # Tokenize and pad the input
    input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True)

    # Generate a response
    output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)

    # Decode the generated response
    generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)

    # Print the generated response
    print("Bot:", generated_response)

    # Add bot's response to the conversation history
    conversation_history.append(generated_response)
---
## Explore and Create

QNetworkGPT2 is your ticket to exploring new horizons in text generation. From chatbots and content creation to storytelling and beyond, it's your AI companion for all text adventures. 🌟

Embrace innovation, adaptation, and expansion to conquer your unique text generation challenges. Your text generation revolution starts here! πŸ“šπŸ€–