File size: 2,225 Bytes
fbba54b 27d25e1 fbba54b 27d25e1 fbba54b 27d25e1 fbba54b 27d25e1 fbba54b 27d25e1 fbba54b 27d25e1 fbba54b 27d25e1 fbba54b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
base_model: bert-base-multilingual-cased
model-index:
- name: mbert-finetuned-azerbaijani-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: wikiann
type: wikiann
args: az
metrics:
- type: precision
value: 0.8898541731306236
name: Precision
- type: recall
value: 0.915416533673795
name: Recall
- type: f1
value: 0.9024543738200126
name: F1
- type: accuracy
value: 0.966948310139165
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbert-finetuned-azerbaijani-ner
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1385
- Precision: 0.8899
- Recall: 0.9154
- F1: 0.9025
- Accuracy: 0.9669
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2928 | 1.0 | 625 | 0.1415 | 0.8584 | 0.8918 | 0.8748 | 0.9595 |
| 0.1254 | 2.0 | 1250 | 0.1335 | 0.8875 | 0.9119 | 0.8996 | 0.9637 |
| 0.077 | 3.0 | 1875 | 0.1385 | 0.8899 | 0.9154 | 0.9025 | 0.9669 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
|