Model save
Browse files
README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo
|
3 |
+
library_name: peft
|
4 |
+
license: gemma
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- sft
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: ADL_Gemma4
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/djengo890-national-taiwan-university/ADL_Gemma/runs/znlc934v)
|
18 |
+
# ADL_Gemma4
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on an unknown dataset.
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 2
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: cosine_with_restarts
|
45 |
+
- lr_scheduler_warmup_ratio: 0.02
|
46 |
+
- num_epochs: 5
|
47 |
+
|
48 |
+
### Framework versions
|
49 |
+
|
50 |
+
- PEFT 0.13.2
|
51 |
+
- Transformers 4.45.1
|
52 |
+
- Pytorch 2.5.0+cu121
|
53 |
+
- Datasets 3.0.2
|
54 |
+
- Tokenizers 0.20.1
|