File size: 7,288 Bytes
02d4cf8 28ace3a 4acd853 888e688 02d4cf8 888e688 02d4cf8 888e688 02d4cf8 888e688 02d4cf8 888e688 02d4cf8 4acd853 02d4cf8 c36741a 3a0f135 7c9a369 381c7c7 3a0f135 381c7c7 3a0f135 06d0582 381c7c7 05ed3a4 06d0582 28ace3a 06d0582 04e906a 381c7c7 06d0582 381c7c7 06d0582 28ace3a 06d0582 381c7c7 f725c02 04e906a 381c7c7 04e906a 381c7c7 06d0582 2fa3523 ca4c8c3 2fa3523 ca4c8c3 2fa3523 06d0582 381c7c7 06d0582 239670d 06d0582 28ace3a 06d0582 28ace3a 06d0582 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Vous en avez assez du jargon administratif incompréhensible ?
Gaston est là pour vous aider !
![Gaston](https://huggingface.co/baconnier/Gaston-Llama-3-8B/resolve/main/gaston2.jpg)
💡 Cette IA a été conçue pour reformuler les communications et documents administratifs en langage clair et simple.
📝 Grâce à Gaston, fini les lettres obscures et les procédures nébuleuses. Tout devient limpide et à la portée du commun des mortels.
😊 Gaston est un POC (Proof of Concept) qui a pour mission de rendre l'administration plus transparente et accessible.
🙌 Son secret ? Une capacité à analyser et à traduire le jargon en termes compréhensibles par tous.
💬 Avec Gaston, les démarches administratives deviennent enfin un jeu d'enfant !
This model is based on Llama-3-8b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE)
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- orpo
base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
---
# Uploaded model
- **Developed by:** baconnier
- **License:** apache-2.0
- **Finetuned from model :** NousResearch/Hermes-2-Pro-Llama-3-8B
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
This model was trained ORPO , using ChatML prompt template format.
```
<|im_start|>user
Qui est tu ?
<|im_end|>
<|im_start|>assistant
```
# Example with local TGI:
See the snippet below for usage with local inference:
```python
#Example: reuse your existing OpenAI setup
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8080/v1", api_key="TGI")
completion = client.chat.completions.create(
model="baconnier/Gaston-Llama-3-8B",
messages=[
{"role": "system", "content": "Reponds comme Gaston, un fonctionnaire français qui s'exprime uniquement en français avec des termes tres simples et surtout sans jamais utiliser de jargon administratif."},
{"role": "user", "content": "l’action en nullité se prescrit par 5 ans ou est prescrite en 5 ans"},
{"role": "assistant", "content": ""}
],
max_tokens=400,
temperature=0.7,
)
print(completion.choices[0].message.content)
```
Output:
```
Le délai de prescription pour l'action en nullité est généralement de cinq ans à compter du jour où
la partie qui peut agir a eu connaissance des faits, selon le Code civil français.
```
# Example with Transformers and pipeline:
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "baconnier/Gaston-Llama-3-8B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
messages=[
{"role": "system", "content": "Reponds comme Gaston, un fonctionnaire français qui s'exprime uniquement en français
avec des termes tres simples et surtout sans jamais utiliser de jargon administratif."},
{"role": "user", "content": "Vous voudrez bien vous munir de toutes les pièces justificatives afférentes à vos déclarations de revenus
et de patrimoine des 3 derniers exercices, nonobstant les éléments déjà produits.
À défaut de réponse de votre part ou en cas de non comparution aux date et heure susvisées,
la procédure de contrôle se poursuivra et nous serons fondés à retenir les éléments en notre possession
en vue de l'établissement des impositions supplémentaires et pénalités subséquentes."},
{"role": "assistant", "content": ""}
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
outputs = pipeline(
prompt,
max_new_tokens=256,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
Question:
```
Vous voudrez bien vous munir de toutes les pièces justificatives afférentes à vos déclarations de revenus
et de patrimoine des 3 derniers exercices, nonobstant les éléments déjà produits.
À défaut de réponse de votre part ou en cas de non comparution aux date et heure susvisées,
la procédure de contrôle se poursuivra et nous serons fondés à retenir les éléments en notre possession
en vue de l'établissement des impositions supplémentaires et pénalités subséquentes.
```
Reponse:
```
Je vous invite à fournir toutes les pièces justificatives concernant vos déclarations de revenus
et de patrimoine des trois dernières années, malgré les éléments déjà fournis.
En cas de non-respect de ce délai ou de manque de réponse,
la procédure de vérification continuera, et nous utiliserons les informations en notre possession
pour établir les impôts supplémentaires et les pénalités associées.
```
Question:
```
Nous accusons réception de votre demande de renouvellement de passeport en date du 15 mars 2023.
Après instruction de votre dossier, il appert que les pièces produites s'avèrent insuffisantes
eu égard aux dispositions de l'article 5-1 du décret n°2005-1726 du 30 décembre 2005.
Nonobstant les justificatifs déjà fournis, il vous appartient de nous transmettre
dans les meilleurs délais les documents complémentaires listés ci-après :
- Copie d'un justificatif de domicile de moins de 6 mois
- Timbre fiscal d'un montant de 86€
À défaut de production des pièces susvisées dans un délai de 30 jours à compter de la présente,
votre demande sera classée sans suite.
Nous vous prions d'agréer, Monsieur, l'expression de nos salutations distinguées.
```
Reponse:
```
Nous recevons votre requête pour renouveler votre passeport datant du 15 mars 2023.
Suite à l'examen de votre dossier, il a été déterminé que les documents fournis
ne respectent pas les exigences mentionnées dans la section 5-1 du décret n°2005-1726 du 30 décembre 2005.
Malgré les pièces déjà fournies, vous devez nous envoyer rapidement les éléments suivants :
- Une copie d'un justificatif de domicile datant de moins de 6 mois.
- Un timbre fiscal d'une valeur de 86 €.
Si ces documents ne sont pas fournis dans un délai de 30 jours à compter de cette lettre, votre demande sera close.
Nous vous prions d'accepter, Monsieur, l'expression de nos salutations respectueuses.
```
# Example with Transformers:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("baconnier/Gaston-Llama-3-8B")
model = AutoModelForCausalLM.from_pretrained("baconnier/Gaston-Llama-3-8B")
prompt = "Nonobstant les justificatifs déjà fournis"
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = model.generate(inputs.input_ids, max_length=200)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
```
|