File size: 2,513 Bytes
3e11ebb faa7c05 3e11ebb faa7c05 3e11ebb 7a32654 3e11ebb 7a32654 de4627f b152c65 efea169 df691d5 578f28a f6afe07 abe4da1 ba538a6 20e9f68 5b54be4 8d87fde 26b3509 4ea8960 faa7c05 3e11ebb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: distilbert-base-cased-distilled-squad
tags:
- generated_from_keras_callback
model-index:
- name: badokorach/distilbert-base-cased-distilled-agric-060124_1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# badokorach/distilbert-base-cased-distilled-agric-060124_1
This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.5748
- Validation Loss: 0.0
- Epoch: 14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 1725, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.8817 | 0.0 | 0 |
| 2.1643 | 0.0 | 1 |
| 1.8788 | 0.0 | 2 |
| 1.6446 | 0.0 | 3 |
| 1.4560 | 0.0 | 4 |
| 1.2835 | 0.0 | 5 |
| 1.1090 | 0.0 | 6 |
| 0.9769 | 0.0 | 7 |
| 0.8940 | 0.0 | 8 |
| 0.7700 | 0.0 | 9 |
| 0.7306 | 0.0 | 10 |
| 0.6732 | 0.0 | 11 |
| 0.6380 | 0.0 | 12 |
| 0.5905 | 0.0 | 13 |
| 0.5748 | 0.0 | 14 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.0
|