EricHallahan
commited on
Commit
·
8a44d5a
1
Parent(s):
d3d2956
Update README.md
Browse files
README.md
CHANGED
@@ -18,19 +18,20 @@ GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](
|
|
18 |
|
19 |
<figure>
|
20 |
|
21 |
-
| Hyperparameter | Value
|
22 |
-
|
23 |
-
| \\(n_{parameters}\\) |
|
24 |
-
| \\(n_{layers}\\) | 28*
|
25 |
-
| \\(d_{model}\\) |
|
26 |
-
| \\(d_{ff}\\) |
|
27 |
-
| \\(n_{heads}\\) | 16
|
28 |
-
| \\(d_{head}\\) | 256
|
29 |
-
| \\(n_{ctx}\\) |
|
30 |
-
| \\(n_{vocab}\\) |
|
31 |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
|
32 |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
|
33 |
-
<figcaption><strong>*</strong> Each layer consists of one feedforward block and one self attention block.</
|
|
|
34 |
|
35 |
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
|
36 |
dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
|
|
|
18 |
|
19 |
<figure>
|
20 |
|
21 |
+
| Hyperparameter | Value |
|
22 |
+
|----------------------|------------|
|
23 |
+
| \\(n_{parameters}\\) | 6053381344 |
|
24 |
+
| \\(n_{layers}\\) | 28* |
|
25 |
+
| \\(d_{model}\\) | 4096 |
|
26 |
+
| \\(d_{ff}\\) | 16384 |
|
27 |
+
| \\(n_{heads}\\) | 16 |
|
28 |
+
| \\(d_{head}\\) | 256 |
|
29 |
+
| \\(n_{ctx}\\) | 2048 |
|
30 |
+
| \\(n_{vocab}\\) | 50257/50400† (same tokenizer as GPT-2/3) |
|
31 |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
|
32 |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
|
33 |
+
<figcaption><p><strong>*</strong> Each layer consists of one feedforward block and one self attention block.</p>
|
34 |
+
<p><strong>†</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
|
35 |
|
36 |
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
|
37 |
dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
|