barbaroo commited on
Commit
56d2cf2
·
verified ·
1 Parent(s): 4274fc9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -141
README.md CHANGED
@@ -1,202 +1,163 @@
1
  ---
2
  base_model: meta-llama/Meta-Llama-3.1-8B
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
  #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
 
 
 
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
 
 
130
 
131
- #### Summary
132
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
  - PEFT 0.13.0
 
1
  ---
2
  base_model: meta-llama/Meta-Llama-3.1-8B
3
  library_name: peft
4
+ datasets:
5
+ - barbaroo/Sprotin_parallel
6
+ language:
7
+ - en
8
+ - fo
9
+ metrics:
10
+ - bleu
11
+ - chrf
12
+ - bertscore
13
+ pipeline_tag: text-generation
14
  ---
15
 
 
 
 
16
 
17
 
18
+ # Model Card: English–Faroese Translation Adapter
19
 
20
  ## Model Details
21
 
22
+ **Model Description**
 
 
 
 
23
 
24
+ - **Developed by:** Barbara Scalvini
25
+ - **Model type:** Language model adapter for **English → Faroese** translation
26
+ - **Language(s):** English, Faroese
27
+ - **License:** This adapter inherits the license from the original Llama 3.1 8B model.
28
+ - **Finetuned from model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B)
29
+ - **Library used:** [PEFT 0.13.0](https://github.com/huggingface/peft)
 
30
 
31
+ ### Model Sources
32
 
33
+ - **Paper:** [COMING SOON]
34
+ ---
 
 
 
35
 
36
  ## Uses
37
 
 
 
38
  ### Direct Use
39
+ This adapter is intended to perform **English→Faroese** translation, leveraging a **parameter-efficient fine-tuning** (PEFT) approach.
 
 
 
40
 
41
  ### Downstream Use [optional]
42
+ - Can be integrated into broader **multilingual** or **localization** workflows.
43
 
 
 
 
44
 
45
  ### Out-of-Scope Use
46
+ - Any uses that rely on languages other than **English or Faroese** will likely yield suboptimal results.
47
+ - Other tasks (e.g., summarization, classification) may be unsupported or require further fine-tuning.
48
 
49
+ ---
 
 
50
 
51
  ## Bias, Risks, and Limitations
52
+ - **Biases:** The model could reflect **biases** present in the training data, such as historical or societal biases in English or Faroese texts.
53
+ - **Recommendation:** Users should **critically evaluate** outputs, especially in sensitive or high-stakes applications.
54
 
55
+ ---
 
 
 
 
 
 
 
 
56
 
57
  ## How to Get Started with the Model
58
 
59
+ ```python
60
+ from transformers import AutoModelForCausalLM, AutoTokenizer
61
+ import torch
62
+
63
+ # Load the trained model and tokenizer from the checkpoint
64
+ checkpoint_dir = "barbaroo/llama3.1_translate_8B" # The directory where your trained model and tokenizer are saved
65
+ model = AutoModelForCausalLM.from_pretrained(checkpoint_dir, device_map="auto", load_in_8bit = True)
66
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir)
67
+ MAX_SEQ_LENGTH = 512
68
+ sentences = ["What's your name?"]
69
+
70
+ # Define the prompt template (same as in training)
71
+ alpaca_prompt = """
72
+ ### Instruction:
73
+ {}
74
+
75
+ ### Input:
76
+ {}
77
+
78
+ ### Response:
79
+ {}"""
80
+
81
+ # Inference loop
82
+ for sentence in sentences:
83
+ inputs = tokenizer(
84
+ [
85
+ alpaca_prompt.format(
86
+ "Translate this sentence from English to Faroese:", # Instruction
87
+ sentence, # The input sentence to translate
88
+ "", # Leave blank for generation
89
+ )
90
+ ],
91
+ return_tensors="pt",
92
+ padding=True,
93
+ truncation=True, # Make sure the input is not too long
94
+ max_length=MAX_SEQ_LENGTH # Enforce the max length if necessary
95
+ ).to("cuda")
96
+
97
+ # Generate the translation
98
+ outputs = model.generate(
99
+ **inputs,
100
+ max_new_tokens=512, # Limit the number of new tokens generated
101
+ eos_token_id=tokenizer.eos_token_id, # Ensure EOS token is used
102
+ pad_token_id=tokenizer.pad_token_id, # Ensure padding token is used
103
+ temperature=0.1, # Sampling temperature for diversity
104
+ top_p=1.0, # Sampling top-p for generation
105
+ use_cache=True # Use cache for efficiency
106
+ )
107
+
108
+ # Decode the generated tokens into text
109
+ output_string = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
110
+ print(f"Input: {sentence}")
111
+ print(f"Generated Translation: {output_string}")
112
+ ```
113
 
 
114
 
115
  ## Training Details
116
 
117
  ### Training Data
118
 
119
+ We used the Sprotin parallel corpus for **English–Faroese** translation: [barbaroo/Sprotin_parallel](https://huggingface.co/datasets/barbaroo/Sprotin_parallel).
120
 
 
121
 
122
  ### Training Procedure
123
 
 
 
124
  #### Preprocessing [optional]
125
 
126
+ - **Tokenization**: We used the tokenizer from the base model `meta-llama/Llama-3.1-8B`.
127
+ - The Alpaca prompt format was used, with Instruction, Input and Response.
128
 
129
  #### Training Hyperparameters
130
+
131
+ - **Epochs**: **3** total, with an **early stopping** criterion monitoring validation loss.
132
+ - **Batch Size**: **2, with 4 Gradient accumulation steps**
133
+ - **Learning Rate**: **2e-4**
134
+ - **Optimizer**: **AdamW** with a linear learning-rate scheduler and warm-up.
135
 
136
+ ---
 
 
 
 
 
 
137
 
138
  ## Evaluation
139
 
 
 
140
  ### Testing Data, Factors & Metrics
141
 
142
  #### Testing Data
143
 
144
+ - The model was evaluated on the **[FLORES-200]** benchmark, of ~1012 English–Faroese pairs.
 
 
 
 
 
 
 
 
 
 
 
 
145
 
 
146
 
147
+ #### Metrics and Results
148
 
149
+ - **BLEU**: **[0.175]**
150
+ - **chrF**: **[49.5]**
151
+ - **BERTScore f1**: **[0.948]**
152
 
153
+ Human evaluation was also performed (see paper)
154
 
155
 
156
+ ## Citation []
157
 
158
+ [COMING SOON]
159
 
160
+ ---
161
+ ## Framework versions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
  - PEFT 0.13.0