Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,163 @@
|
|
1 |
---
|
2 |
base_model: meta-llama/Meta-Llama-3.1-8B
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
### Downstream Use [optional]
|
|
|
47 |
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
#### Preprocessing [optional]
|
89 |
|
90 |
-
|
91 |
-
|
92 |
|
93 |
#### Training Hyperparameters
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
-
[More Information Needed]
|
126 |
|
127 |
-
|
128 |
|
129 |
-
|
|
|
|
|
130 |
|
131 |
-
|
132 |
|
133 |
|
|
|
134 |
|
135 |
-
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
|
202 |
- PEFT 0.13.0
|
|
|
1 |
---
|
2 |
base_model: meta-llama/Meta-Llama-3.1-8B
|
3 |
library_name: peft
|
4 |
+
datasets:
|
5 |
+
- barbaroo/Sprotin_parallel
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
- fo
|
9 |
+
metrics:
|
10 |
+
- bleu
|
11 |
+
- chrf
|
12 |
+
- bertscore
|
13 |
+
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
+
# Model Card: English–Faroese Translation Adapter
|
19 |
|
20 |
## Model Details
|
21 |
|
22 |
+
**Model Description**
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
- **Developed by:** Barbara Scalvini
|
25 |
+
- **Model type:** Language model adapter for **English → Faroese** translation
|
26 |
+
- **Language(s):** English, Faroese
|
27 |
+
- **License:** This adapter inherits the license from the original Llama 3.1 8B model.
|
28 |
+
- **Finetuned from model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B)
|
29 |
+
- **Library used:** [PEFT 0.13.0](https://github.com/huggingface/peft)
|
|
|
30 |
|
31 |
+
### Model Sources
|
32 |
|
33 |
+
- **Paper:** [COMING SOON]
|
34 |
+
---
|
|
|
|
|
|
|
35 |
|
36 |
## Uses
|
37 |
|
|
|
|
|
38 |
### Direct Use
|
39 |
+
This adapter is intended to perform **English→Faroese** translation, leveraging a **parameter-efficient fine-tuning** (PEFT) approach.
|
|
|
|
|
|
|
40 |
|
41 |
### Downstream Use [optional]
|
42 |
+
- Can be integrated into broader **multilingual** or **localization** workflows.
|
43 |
|
|
|
|
|
|
|
44 |
|
45 |
### Out-of-Scope Use
|
46 |
+
- Any uses that rely on languages other than **English or Faroese** will likely yield suboptimal results.
|
47 |
+
- Other tasks (e.g., summarization, classification) may be unsupported or require further fine-tuning.
|
48 |
|
49 |
+
---
|
|
|
|
|
50 |
|
51 |
## Bias, Risks, and Limitations
|
52 |
+
- **Biases:** The model could reflect **biases** present in the training data, such as historical or societal biases in English or Faroese texts.
|
53 |
+
- **Recommendation:** Users should **critically evaluate** outputs, especially in sensitive or high-stakes applications.
|
54 |
|
55 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
## How to Get Started with the Model
|
58 |
|
59 |
+
```python
|
60 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
61 |
+
import torch
|
62 |
+
|
63 |
+
# Load the trained model and tokenizer from the checkpoint
|
64 |
+
checkpoint_dir = "barbaroo/llama3.1_translate_8B" # The directory where your trained model and tokenizer are saved
|
65 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint_dir, device_map="auto", load_in_8bit = True)
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir)
|
67 |
+
MAX_SEQ_LENGTH = 512
|
68 |
+
sentences = ["What's your name?"]
|
69 |
+
|
70 |
+
# Define the prompt template (same as in training)
|
71 |
+
alpaca_prompt = """
|
72 |
+
### Instruction:
|
73 |
+
{}
|
74 |
+
|
75 |
+
### Input:
|
76 |
+
{}
|
77 |
+
|
78 |
+
### Response:
|
79 |
+
{}"""
|
80 |
+
|
81 |
+
# Inference loop
|
82 |
+
for sentence in sentences:
|
83 |
+
inputs = tokenizer(
|
84 |
+
[
|
85 |
+
alpaca_prompt.format(
|
86 |
+
"Translate this sentence from English to Faroese:", # Instruction
|
87 |
+
sentence, # The input sentence to translate
|
88 |
+
"", # Leave blank for generation
|
89 |
+
)
|
90 |
+
],
|
91 |
+
return_tensors="pt",
|
92 |
+
padding=True,
|
93 |
+
truncation=True, # Make sure the input is not too long
|
94 |
+
max_length=MAX_SEQ_LENGTH # Enforce the max length if necessary
|
95 |
+
).to("cuda")
|
96 |
+
|
97 |
+
# Generate the translation
|
98 |
+
outputs = model.generate(
|
99 |
+
**inputs,
|
100 |
+
max_new_tokens=512, # Limit the number of new tokens generated
|
101 |
+
eos_token_id=tokenizer.eos_token_id, # Ensure EOS token is used
|
102 |
+
pad_token_id=tokenizer.pad_token_id, # Ensure padding token is used
|
103 |
+
temperature=0.1, # Sampling temperature for diversity
|
104 |
+
top_p=1.0, # Sampling top-p for generation
|
105 |
+
use_cache=True # Use cache for efficiency
|
106 |
+
)
|
107 |
+
|
108 |
+
# Decode the generated tokens into text
|
109 |
+
output_string = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
110 |
+
print(f"Input: {sentence}")
|
111 |
+
print(f"Generated Translation: {output_string}")
|
112 |
+
```
|
113 |
|
|
|
114 |
|
115 |
## Training Details
|
116 |
|
117 |
### Training Data
|
118 |
|
119 |
+
We used the Sprotin parallel corpus for **English–Faroese** translation: [barbaroo/Sprotin_parallel](https://huggingface.co/datasets/barbaroo/Sprotin_parallel).
|
120 |
|
|
|
121 |
|
122 |
### Training Procedure
|
123 |
|
|
|
|
|
124 |
#### Preprocessing [optional]
|
125 |
|
126 |
+
- **Tokenization**: We used the tokenizer from the base model `meta-llama/Llama-3.1-8B`.
|
127 |
+
- The Alpaca prompt format was used, with Instruction, Input and Response.
|
128 |
|
129 |
#### Training Hyperparameters
|
130 |
+
|
131 |
+
- **Epochs**: **3** total, with an **early stopping** criterion monitoring validation loss.
|
132 |
+
- **Batch Size**: **2, with 4 Gradient accumulation steps**
|
133 |
+
- **Learning Rate**: **2e-4**
|
134 |
+
- **Optimizer**: **AdamW** with a linear learning-rate scheduler and warm-up.
|
135 |
|
136 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
## Evaluation
|
139 |
|
|
|
|
|
140 |
### Testing Data, Factors & Metrics
|
141 |
|
142 |
#### Testing Data
|
143 |
|
144 |
+
- The model was evaluated on the **[FLORES-200]** benchmark, of ~1012 English–Faroese pairs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
|
|
146 |
|
147 |
+
#### Metrics and Results
|
148 |
|
149 |
+
- **BLEU**: **[0.175]**
|
150 |
+
- **chrF**: **[49.5]**
|
151 |
+
- **BERTScore f1**: **[0.948]**
|
152 |
|
153 |
+
Human evaluation was also performed (see paper)
|
154 |
|
155 |
|
156 |
+
## Citation []
|
157 |
|
158 |
+
[COMING SOON]
|
159 |
|
160 |
+
---
|
161 |
+
## Framework versions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
- PEFT 0.13.0
|