Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,10 @@ tags:
|
|
9 |
|
10 |
# ATT&CK BERT
|
11 |
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
@@ -25,64 +28,10 @@ Then you can use the model like this:
|
|
25 |
|
26 |
```python
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["
|
29 |
|
30 |
model = SentenceTransformer('basel/ATTACK-BERT')
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
## Evaluation Results
|
38 |
-
|
39 |
-
<!--- Describe how your model was evaluated -->
|
40 |
-
|
41 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
42 |
-
|
43 |
-
|
44 |
-
## Training
|
45 |
-
The model was trained with the parameters:
|
46 |
-
|
47 |
-
**DataLoader**:
|
48 |
-
|
49 |
-
`torch.utils.data.dataloader.DataLoader` of length 4320 with parameters:
|
50 |
-
```
|
51 |
-
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
-
```
|
53 |
-
|
54 |
-
**Loss**:
|
55 |
-
|
56 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
57 |
-
|
58 |
-
Parameters of the fit()-Method:
|
59 |
-
```
|
60 |
-
{
|
61 |
-
"epochs": 1,
|
62 |
-
"evaluation_steps": 2000,
|
63 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
64 |
-
"max_grad_norm": 1,
|
65 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
66 |
-
"optimizer_params": {
|
67 |
-
"lr": 2e-05
|
68 |
-
},
|
69 |
-
"scheduler": "WarmupLinear",
|
70 |
-
"steps_per_epoch": null,
|
71 |
-
"warmup_steps": 10000,
|
72 |
-
"weight_decay": 0.01
|
73 |
-
}
|
74 |
-
```
|
75 |
-
|
76 |
-
|
77 |
-
## Full Model Architecture
|
78 |
-
```
|
79 |
-
SentenceTransformer(
|
80 |
-
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
81 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
82 |
-
(2): Normalize()
|
83 |
-
)
|
84 |
-
```
|
85 |
-
|
86 |
-
## Citing & Authors
|
87 |
-
|
88 |
-
<!--- Describe where people can find more information -->
|
|
|
9 |
|
10 |
# ATT&CK BERT
|
11 |
|
12 |
+
ATT&CK BERT is a cybersecurity domain-specific language model based on [sentence-transformers](https://www.SBERT.net).
|
13 |
+
ATT&CK BERT maps sentences representing attack actions to a semantically meaningful embedding vector.
|
14 |
+
Sentences with similar meanings will have a high cosine similarity.
|
15 |
+
|
16 |
|
17 |
<!--- Describe your model here -->
|
18 |
|
|
|
28 |
|
29 |
```python
|
30 |
from sentence_transformers import SentenceTransformer
|
31 |
+
sentences = ["Attacker takes a screenshot", "Attacker captures the screen"]
|
32 |
|
33 |
model = SentenceTransformer('basel/ATTACK-BERT')
|
34 |
embeddings = model.encode(sentences)
|
35 |
print(embeddings)
|
36 |
```
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|