File size: 2,141 Bytes
9ceb86a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: flan-t5-xl
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: validation
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 45.1318
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-xl
This model is a fine-tuned version of [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2648
- Rouge1: 45.1318
- Rouge2: 22.2773
- Rougel: 31.9084
- Rougelsum: 42.0558
- Gen Len: 94.2332
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 96
- total_eval_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| 1.4352 | 1.0 | 2991 | 1.2645 | 43.8582 | 21.2227 | 30.7038 | 40.761 | 101.9968 |
| 1.3198 | 2.0 | 5982 | 1.2525 | 44.4594 | 21.8174 | 31.4304 | 41.4563 | 94.0733 |
| 1.2151 | 3.0 | 8973 | 1.2648 | 45.1318 | 22.2773 | 31.9084 | 42.0558 | 94.2332 |
### Framework versions
- Transformers 4.27.1
- Pytorch 2.0.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|