ben765 commited on
Commit
b231b5e
·
1 Parent(s): 3660685

PPO LunarLander-v2

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 71.56 +/- 113.41
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d8e2cea70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d8e2ceb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d8e2ceb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d8e2cec20>", "_build": "<function ActorCriticPolicy._build at 0x7f0d8e2cecb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0d8e2ced40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d8e2cedd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0d8e2cee60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d8e2ceef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d8e2cef80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d8e2d4050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0d8e2aa240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656698798.1692517, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAGjYjvgznDj+qkZy+20CKv+HkJD0YdVG+AAAAAAAAAADafHY+Nph7Pe0Ekj4M5pi/F10zPWLF2TsAAAAAAAAAALrjMT6Nyrs//iYaP8aQ271IFsy9cn68OwAAAAAAAAAA8867PgsAFj8hjBE/L9eFvw5FxD56gC8+AAAAAAAAAACNR4U9VVhzPzJsDD6QhUW/hW8BPJ10lj0AAAAAAAAAAGa81D04TpI/+g/gPquZPb/ymKi8WG23PQAAAAAAAAAAvVyMvtrB1j5jAfO9hXOWvzuKP745w509AAAAAAAAAABmKGu98bawPw5tt77TFI2+XiRLPM94rr0AAAAAAAAAAKD/kr5vyiQ/jroEv/3ucb9ELfa9nd+BvAAAAAAAAAAANg2BvqEJZz9C/f6+jDZpv4/vvbpjd3O+AAAAAAAAAAAzSSa8CKXBP4N5Qjw/bqq+bx3bPILlyr0AAAAAAAAAANrQ3z3t3KM/nmgKP0ax6L40r3G8cCDLPAAAAAAAAAAAZrYyuzYZtD82bo2+O4YxvgiITzvoJIA9AAAAAAAAAACSU52+ijCdP6qtIb9ykxO//9q+PS4Dhb4AAAAAAAAAAEDGwL3Kq70/nrsRvyk2uT0dBgA+6/jTPQAAAAAAAAAAzXH0PEorpD+uU5A+DpESv5aeUr35F8u9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAEAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJSTSNv59WcCUhpRSlIwBbJRLUYwBdJRHQGbCIUJv5xl1fZQoaAZoCWgPQwireY7IdzFOwJSGlFKUaBVLXWgWR0BmwvL5hz/7dX2UKGgGaAloD0MIAFMGDmiBSsCUhpRSlGgVS15oFkdAZsMnCO3lS3V9lChoBmgJaA9DCKhvmdNlSSHAlIaUUpRoFUtNaBZHQGbDx3NcGC91fZQoaAZoCWgPQwiiQnVz8TlawJSGlFKUaBVLd2gWR0BmxDlaKUFCdX2UKGgGaAloD0MIgCiYMQWBUsCUhpRSlGgVS0poFkdAZsUMwUQCjnV9lChoBmgJaA9DCEpATMKFYV7AlIaUUpRoFUttaBZHQGbGjK5kK/p1fZQoaAZoCWgPQwg/U69bBEb1v5SGlFKUaBVLlWgWR0BmxpBE8aGYdX2UKGgGaAloD0MIEFoPXyaPUsCUhpRSlGgVS3loFkdAZsc//vOQhnV9lChoBmgJaA9DCL9IaMu5SFbAlIaUUpRoFUtraBZHQGbHYlhPTG51fZQoaAZoCWgPQwjjcVEtIgRSwJSGlFKUaBVLRmgWR0BmyPXI2fkFdX2UKGgGaAloD0MI9pZyvtjKVsCUhpRSlGgVSz5oFkdAZslOfNA1N3V9lChoBmgJaA9DCI1feCXJCFPAlIaUUpRoFUtbaBZHQGbKbDVH4Gl1fZQoaAZoCWgPQwiPGD230NFWwJSGlFKUaBVLdWgWR0BmyxcTrVvudX2UKGgGaAloD0MI++b+6nEtUcCUhpRSlGgVS0poFkdAZsuhew9q13V9lChoBmgJaA9DCCvaHOc2KlTAlIaUUpRoFUtSaBZHQGbMVyWAwwl1fZQoaAZoCWgPQwgDkxtFVi9gwJSGlFKUaBVLZWgWR0BmzPnlnyuqdX2UKGgGaAloD0MIU0Da/wCRUcCUhpRSlGgVS0xoFkdAZszqi48U23V9lChoBmgJaA9DCCpSYWwhnlrAlIaUUpRoFUtoaBZHQGbNE+xGDth1fZQoaAZoCWgPQwgjFcYWgkZXwJSGlFKUaBVLTmgWR0Bmzdf5ULlWdX2UKGgGaAloD0MIRyHJrN7FSsCUhpRSlGgVS0JoFkdAZs7Nyo4uLHV9lChoBmgJaA9DCHWsUnqm31DAlIaUUpRoFUt5aBZHQGbP7xmTTv11fZQoaAZoCWgPQwhfXoB9dGJPwJSGlFKUaBVLVWgWR0Bm0DFGXokidX2UKGgGaAloD0MICoSdYtWyQcCUhpRSlGgVS1doFkdAZtBs9jgAInV9lChoBmgJaA9DCJOnrKbrzFvAlIaUUpRoFUtUaBZHQGbQ7cwg1WN1fZQoaAZoCWgPQwiXcymuKj8/wJSGlFKUaBVLcWgWR0Bm0NwrDqGDdX2UKGgGaAloD0MI6/zbZb8iTMCUhpRSlGgVS0hoFkdAZtM1dgOSXHV9lChoBmgJaA9DCBjpRe1+f07AlIaUUpRoFUtVaBZHQGbUCJwbVBl1fZQoaAZoCWgPQwgv4GWGjaJYwJSGlFKUaBVLZ2gWR0Bm1PocJdB0dX2UKGgGaAloD0MIH0yKj0/xW8CUhpRSlGgVS0hoFkdAZtUkqMFUynV9lChoBmgJaA9DCHpW0opvHFDAlIaUUpRoFUtOaBZHQGbVMuvllsh1fZQoaAZoCWgPQwhzSdV2E/VTwJSGlFKUaBVLc2gWR0Bm1gCCBf8edX2UKGgGaAloD0MI1XlU/N+zTMCUhpRSlGgVS1JoFkdAZtZTCtRvWHV9lChoBmgJaA9DCJ4KuOf5gljAlIaUUpRoFUtWaBZHQGbWnggow251fZQoaAZoCWgPQwgR/7ClR01MwJSGlFKUaBVLbmgWR0Bm2BU70WdmdX2UKGgGaAloD0MIq1lnfF8WUcCUhpRSlGgVS1toFkdAZtgwUxmCiHV9lChoBmgJaA9DCFlsk4rGy1nAlIaUUpRoFUtYaBZHQGbYxvegte51fZQoaAZoCWgPQwgDtoMR+2NSwJSGlFKUaBVLUmgWR0Bm2aDEm6XjdX2UKGgGaAloD0MIRl1r71O8VsCUhpRSlGgVS1loFkdAZtpA31jAi3V9lChoBmgJaA9DCGdfeZCeOlPAlIaUUpRoFUtWaBZHQGbadYfW+XZ1fZQoaAZoCWgPQwh3ai43GCdWwJSGlFKUaBVLY2gWR0Bm3AMc6vJSdX2UKGgGaAloD0MICTTY1HmqUsCUhpRSlGgVS0NoFkdAZtyef7Jnx3V9lChoBmgJaA9DCEGd8uhGu1PAlIaUUpRoFUtJaBZHQGbdZKWcBlt1fZQoaAZoCWgPQwiAYI4ev+FVwJSGlFKUaBVLVWgWR0Bm3a9K28ZldX2UKGgGaAloD0MIE5oklpQvVsCUhpRSlGgVS3xoFkdAZt4MPSUkfXV9lChoBmgJaA9DCF8M5US7VErAlIaUUpRoFUthaBZHQGbeTqrzXjF1fZQoaAZoCWgPQwg9RQ4RN8hQwJSGlFKUaBVLSGgWR0Bm3uKGcnVodX2UKGgGaAloD0MII9dNKa8iWMCUhpRSlGgVS11oFkdAZt/ThHbypnV9lChoBmgJaA9DCDJ2wktwOFnAlIaUUpRoFUtbaBZHQGbg+cH4XXR1fZQoaAZoCWgPQwimfXN/9cZWwJSGlFKUaBVLX2gWR0Bm4R2wFC9idX2UKGgGaAloD0MIaJJYUu6XUcCUhpRSlGgVS09oFkdAZuF1HOKO1nV9lChoBmgJaA9DCOzbSUT4WlHAlIaUUpRoFUs/aBZHQGbhsJQcghd1fZQoaAZoCWgPQwiyZI7lXQlawJSGlFKUaBVLW2gWR0Bm5DAWSEDhdX2UKGgGaAloD0MIfsSvWMOXV8CUhpRSlGgVS0loFkdAZuULv1DjR3V9lChoBmgJaA9DCHAKKxVUV1vAlIaUUpRoFUtuaBZHQGbldU83dbh1fZQoaAZoCWgPQwg1JO6x9DFJwJSGlFKUaBVLfWgWR0Bm5nYnOSntdX2UKGgGaAloD0MIHuG04EUNSsCUhpRSlGgVS2poFkdAZuamMwUQCnV9lChoBmgJaA9DCH9t/fSfOU3AlIaUUpRoFUs+aBZHQGboDwYtQKt1fZQoaAZoCWgPQwgcmNwosu5LwJSGlFKUaBVLXmgWR0Bm6FDKHO8kdX2UKGgGaAloD0MIYTJVMCpnTMCUhpRSlGgVS0poFkdAZuhmcvugH3V9lChoBmgJaA9DCPUPIhlyGlzAlIaUUpRoFUt0aBZHQGbpY1gpjMF1fZQoaAZoCWgPQwgvwhTl0v5ZwJSGlFKUaBVLaWgWR0Bm6eOS4e90dX2UKGgGaAloD0MIAmGnWDU7VsCUhpRSlGgVS1NoFkdAZurfR/mT1XV9lChoBmgJaA9DCLqBAu/kNVnAlIaUUpRoFUtvaBZHQGbrJoK2KEZ1fZQoaAZoCWgPQwhI3c6+8npIwJSGlFKUaBVLa2gWR0Bm60an752ydX2UKGgGaAloD0MISz52FyhtVcCUhpRSlGgVS3VoFkdAZuufigkC3nV9lChoBmgJaA9DCPuytFNz81fAlIaUUpRoFUtHaBZHQGbtN4qwyIp1fZQoaAZoCWgPQwhLr83GSsZOwJSGlFKUaBVLRGgWR0Bm7U3qAz55dX2UKGgGaAloD0MIL8A+OnVDUMCUhpRSlGgVS25oFkdAZu14mkWRBHV9lChoBmgJaA9DCK9DNSVZhFDAlIaUUpRoFUs+aBZHQGbtpVCHARF1fZQoaAZoCWgPQwhB1lOrr/BawJSGlFKUaBVLaGgWR0Bm7ZFy7wrldX2UKGgGaAloD0MIy9qmeFysOMCUhpRSlGgVS1JoFkdAZu3QP7N0NnV9lChoBmgJaA9DCH2utmJ/41HAlIaUUpRoFUtNaBZHQGbvi704BFN1fZQoaAZoCWgPQwhyi/m5oVFZwJSGlFKUaBVLQ2gWR0Bm8Ba/yoXLdX2UKGgGaAloD0MIVpqUgm4ZR8CUhpRSlGgVS0loFkdAZvC4XoC+13V9lChoBmgJaA9DCGZJgJpaI1TAlIaUUpRoFUtFaBZHQGbx1O0svqV1fZQoaAZoCWgPQwiJ8C+CxiFRwJSGlFKUaBVLTmgWR0Bm8mHJtBOYdX2UKGgGaAloD0MIy9dl+E84XcCUhpRSlGgVS0ZoFkdAZvMuxKQJX3V9lChoBmgJaA9DCLExryMORU3AlIaUUpRoFUtsaBZHQGb0hIWgvlF1fZQoaAZoCWgPQwgKLlbUYLlSwJSGlFKUaBVLSWgWR0Bm9dCNS619dX2UKGgGaAloD0MIsBwhA3mOR8CUhpRSlGgVS0doFkdAZvWskIHC43V9lChoBmgJaA9DCL1xUph362DAlIaUUpRoFUteaBZHQGb13lS0jTt1fZQoaAZoCWgPQwjcK/NWXR9SwJSGlFKUaBVLXmgWR0Bm9jreIl+mdX2UKGgGaAloD0MIh8Woa+15PsCUhpRSlGgVS0toFkdAZvZ0fYBeX3V9lChoBmgJaA9DCHIYzF8hL1bAlIaUUpRoFUteaBZHQGb2jXnQpnZ1fZQoaAZoCWgPQwjRCDauf6ZZwJSGlFKUaBVLTmgWR0Bm9sQZn+Q2dX2UKGgGaAloD0MIfjmzXaHzS8CUhpRSlGgVS0ZoFkdAZvpsvZh8Y3V9lChoBmgJaA9DCM3n3O16xVTAlIaUUpRoFUtXaBZHQGb6yXdCVr11fZQoaAZoCWgPQwiGBIwub1FSwJSGlFKUaBVLeGgWR0Bm+1TFVDKHdX2UKGgGaAloD0MIR1hUxOkVVMCUhpRSlGgVS3loFkdAZvuQJXyRS3V9lChoBmgJaA9DCJVkHY6uWljAlIaUUpRoFUtpaBZHQGb7uhkAggZ1fZQoaAZoCWgPQwgTgH9Kla1WwJSGlFKUaBVLZmgWR0Bm+/Td+G47dX2UKGgGaAloD0MIhNOCF30ZWcCUhpRSlGgVS1ZoFkdAZv0YD1XeWXV9lChoBmgJaA9DCCVZh6Or5EvAlIaUUpRoFUtnaBZHQGb9ttqHoHN1fZQoaAZoCWgPQwgsKAzKND1XwJSGlFKUaBVLR2gWR0Bm/miaiKzidX2UKGgGaAloD0MI11HVBFGLWcCUhpRSlGgVS1BoFkdAZv6vN/vv0HV9lChoBmgJaA9DCD2elh+4MErAlIaUUpRoFUtJaBZHQGb/Bd+ocaR1fZQoaAZoCWgPQwgiizTxDqJYwJSGlFKUaBVLXmgWR0Bm/1Y+0PYndX2UKGgGaAloD0MINuZ1xCGyV8CUhpRSlGgVS1JoFkdAZv/LJ0W/J3V9lChoBmgJaA9DCA5pVOBkfVrAlIaUUpRoFUteaBZHQGcBAXMyJsR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_lunar_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5accc6b8026a582d9d6319194e612f1769e0b27d91c55a2b1053b6073111dec
3
+ size 144021
ppo_lunar_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo_lunar_lander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d8e2cea70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d8e2ceb00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d8e2ceb90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d8e2cec20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0d8e2cecb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0d8e2ced40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d8e2cedd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0d8e2cee60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d8e2ceef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d8e2cef80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d8e2d4050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0d8e2aa240>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 114688,
46
+ "_total_timesteps": 100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1656698798.1692517,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAGjYjvgznDj+qkZy+20CKv+HkJD0YdVG+AAAAAAAAAADafHY+Nph7Pe0Ekj4M5pi/F10zPWLF2TsAAAAAAAAAALrjMT6Nyrs//iYaP8aQ271IFsy9cn68OwAAAAAAAAAA8867PgsAFj8hjBE/L9eFvw5FxD56gC8+AAAAAAAAAACNR4U9VVhzPzJsDD6QhUW/hW8BPJ10lj0AAAAAAAAAAGa81D04TpI/+g/gPquZPb/ymKi8WG23PQAAAAAAAAAAvVyMvtrB1j5jAfO9hXOWvzuKP745w509AAAAAAAAAABmKGu98bawPw5tt77TFI2+XiRLPM94rr0AAAAAAAAAAKD/kr5vyiQ/jroEv/3ucb9ELfa9nd+BvAAAAAAAAAAANg2BvqEJZz9C/f6+jDZpv4/vvbpjd3O+AAAAAAAAAAAzSSa8CKXBP4N5Qjw/bqq+bx3bPILlyr0AAAAAAAAAANrQ3z3t3KM/nmgKP0ax6L40r3G8cCDLPAAAAAAAAAAAZrYyuzYZtD82bo2+O4YxvgiITzvoJIA9AAAAAAAAAACSU52+ijCdP6qtIb9ykxO//9q+PS4Dhb4AAAAAAAAAAEDGwL3Kq70/nrsRvyk2uT0dBgA+6/jTPQAAAAAAAAAAzXH0PEorpD+uU5A+DpESv5aeUr35F8u9AAAAAAAAAACUdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAEAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.1468799999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJSTSNv59WcCUhpRSlIwBbJRLUYwBdJRHQGbCIUJv5xl1fZQoaAZoCWgPQwireY7IdzFOwJSGlFKUaBVLXWgWR0BmwvL5hz/7dX2UKGgGaAloD0MIAFMGDmiBSsCUhpRSlGgVS15oFkdAZsMnCO3lS3V9lChoBmgJaA9DCKhvmdNlSSHAlIaUUpRoFUtNaBZHQGbDx3NcGC91fZQoaAZoCWgPQwiiQnVz8TlawJSGlFKUaBVLd2gWR0BmxDlaKUFCdX2UKGgGaAloD0MIgCiYMQWBUsCUhpRSlGgVS0poFkdAZsUMwUQCjnV9lChoBmgJaA9DCEpATMKFYV7AlIaUUpRoFUttaBZHQGbGjK5kK/p1fZQoaAZoCWgPQwg/U69bBEb1v5SGlFKUaBVLlWgWR0BmxpBE8aGYdX2UKGgGaAloD0MIEFoPXyaPUsCUhpRSlGgVS3loFkdAZsc//vOQhnV9lChoBmgJaA9DCL9IaMu5SFbAlIaUUpRoFUtraBZHQGbHYlhPTG51fZQoaAZoCWgPQwjjcVEtIgRSwJSGlFKUaBVLRmgWR0BmyPXI2fkFdX2UKGgGaAloD0MI9pZyvtjKVsCUhpRSlGgVSz5oFkdAZslOfNA1N3V9lChoBmgJaA9DCI1feCXJCFPAlIaUUpRoFUtbaBZHQGbKbDVH4Gl1fZQoaAZoCWgPQwiPGD230NFWwJSGlFKUaBVLdWgWR0BmyxcTrVvudX2UKGgGaAloD0MI++b+6nEtUcCUhpRSlGgVS0poFkdAZsuhew9q13V9lChoBmgJaA9DCCvaHOc2KlTAlIaUUpRoFUtSaBZHQGbMVyWAwwl1fZQoaAZoCWgPQwgDkxtFVi9gwJSGlFKUaBVLZWgWR0BmzPnlnyuqdX2UKGgGaAloD0MIU0Da/wCRUcCUhpRSlGgVS0xoFkdAZszqi48U23V9lChoBmgJaA9DCCpSYWwhnlrAlIaUUpRoFUtoaBZHQGbNE+xGDth1fZQoaAZoCWgPQwgjFcYWgkZXwJSGlFKUaBVLTmgWR0Bmzdf5ULlWdX2UKGgGaAloD0MIRyHJrN7FSsCUhpRSlGgVS0JoFkdAZs7Nyo4uLHV9lChoBmgJaA9DCHWsUnqm31DAlIaUUpRoFUt5aBZHQGbP7xmTTv11fZQoaAZoCWgPQwhfXoB9dGJPwJSGlFKUaBVLVWgWR0Bm0DFGXokidX2UKGgGaAloD0MICoSdYtWyQcCUhpRSlGgVS1doFkdAZtBs9jgAInV9lChoBmgJaA9DCJOnrKbrzFvAlIaUUpRoFUtUaBZHQGbQ7cwg1WN1fZQoaAZoCWgPQwiXcymuKj8/wJSGlFKUaBVLcWgWR0Bm0NwrDqGDdX2UKGgGaAloD0MI6/zbZb8iTMCUhpRSlGgVS0hoFkdAZtM1dgOSXHV9lChoBmgJaA9DCBjpRe1+f07AlIaUUpRoFUtVaBZHQGbUCJwbVBl1fZQoaAZoCWgPQwgv4GWGjaJYwJSGlFKUaBVLZ2gWR0Bm1PocJdB0dX2UKGgGaAloD0MIH0yKj0/xW8CUhpRSlGgVS0hoFkdAZtUkqMFUynV9lChoBmgJaA9DCHpW0opvHFDAlIaUUpRoFUtOaBZHQGbVMuvllsh1fZQoaAZoCWgPQwhzSdV2E/VTwJSGlFKUaBVLc2gWR0Bm1gCCBf8edX2UKGgGaAloD0MI1XlU/N+zTMCUhpRSlGgVS1JoFkdAZtZTCtRvWHV9lChoBmgJaA9DCJ4KuOf5gljAlIaUUpRoFUtWaBZHQGbWnggow251fZQoaAZoCWgPQwgR/7ClR01MwJSGlFKUaBVLbmgWR0Bm2BU70WdmdX2UKGgGaAloD0MIq1lnfF8WUcCUhpRSlGgVS1toFkdAZtgwUxmCiHV9lChoBmgJaA9DCFlsk4rGy1nAlIaUUpRoFUtYaBZHQGbYxvegte51fZQoaAZoCWgPQwgDtoMR+2NSwJSGlFKUaBVLUmgWR0Bm2aDEm6XjdX2UKGgGaAloD0MIRl1r71O8VsCUhpRSlGgVS1loFkdAZtpA31jAi3V9lChoBmgJaA9DCGdfeZCeOlPAlIaUUpRoFUtWaBZHQGbadYfW+XZ1fZQoaAZoCWgPQwh3ai43GCdWwJSGlFKUaBVLY2gWR0Bm3AMc6vJSdX2UKGgGaAloD0MICTTY1HmqUsCUhpRSlGgVS0NoFkdAZtyef7Jnx3V9lChoBmgJaA9DCEGd8uhGu1PAlIaUUpRoFUtJaBZHQGbdZKWcBlt1fZQoaAZoCWgPQwiAYI4ev+FVwJSGlFKUaBVLVWgWR0Bm3a9K28ZldX2UKGgGaAloD0MIE5oklpQvVsCUhpRSlGgVS3xoFkdAZt4MPSUkfXV9lChoBmgJaA9DCF8M5US7VErAlIaUUpRoFUthaBZHQGbeTqrzXjF1fZQoaAZoCWgPQwg9RQ4RN8hQwJSGlFKUaBVLSGgWR0Bm3uKGcnVodX2UKGgGaAloD0MII9dNKa8iWMCUhpRSlGgVS11oFkdAZt/ThHbypnV9lChoBmgJaA9DCDJ2wktwOFnAlIaUUpRoFUtbaBZHQGbg+cH4XXR1fZQoaAZoCWgPQwimfXN/9cZWwJSGlFKUaBVLX2gWR0Bm4R2wFC9idX2UKGgGaAloD0MIaJJYUu6XUcCUhpRSlGgVS09oFkdAZuF1HOKO1nV9lChoBmgJaA9DCOzbSUT4WlHAlIaUUpRoFUs/aBZHQGbhsJQcghd1fZQoaAZoCWgPQwiyZI7lXQlawJSGlFKUaBVLW2gWR0Bm5DAWSEDhdX2UKGgGaAloD0MIfsSvWMOXV8CUhpRSlGgVS0loFkdAZuULv1DjR3V9lChoBmgJaA9DCHAKKxVUV1vAlIaUUpRoFUtuaBZHQGbldU83dbh1fZQoaAZoCWgPQwg1JO6x9DFJwJSGlFKUaBVLfWgWR0Bm5nYnOSntdX2UKGgGaAloD0MIHuG04EUNSsCUhpRSlGgVS2poFkdAZuamMwUQCnV9lChoBmgJaA9DCH9t/fSfOU3AlIaUUpRoFUs+aBZHQGboDwYtQKt1fZQoaAZoCWgPQwgcmNwosu5LwJSGlFKUaBVLXmgWR0Bm6FDKHO8kdX2UKGgGaAloD0MIYTJVMCpnTMCUhpRSlGgVS0poFkdAZuhmcvugH3V9lChoBmgJaA9DCPUPIhlyGlzAlIaUUpRoFUt0aBZHQGbpY1gpjMF1fZQoaAZoCWgPQwgvwhTl0v5ZwJSGlFKUaBVLaWgWR0Bm6eOS4e90dX2UKGgGaAloD0MIAmGnWDU7VsCUhpRSlGgVS1NoFkdAZurfR/mT1XV9lChoBmgJaA9DCLqBAu/kNVnAlIaUUpRoFUtvaBZHQGbrJoK2KEZ1fZQoaAZoCWgPQwhI3c6+8npIwJSGlFKUaBVLa2gWR0Bm60an752ydX2UKGgGaAloD0MISz52FyhtVcCUhpRSlGgVS3VoFkdAZuufigkC3nV9lChoBmgJaA9DCPuytFNz81fAlIaUUpRoFUtHaBZHQGbtN4qwyIp1fZQoaAZoCWgPQwhLr83GSsZOwJSGlFKUaBVLRGgWR0Bm7U3qAz55dX2UKGgGaAloD0MIL8A+OnVDUMCUhpRSlGgVS25oFkdAZu14mkWRBHV9lChoBmgJaA9DCK9DNSVZhFDAlIaUUpRoFUs+aBZHQGbtpVCHARF1fZQoaAZoCWgPQwhB1lOrr/BawJSGlFKUaBVLaGgWR0Bm7ZFy7wrldX2UKGgGaAloD0MIy9qmeFysOMCUhpRSlGgVS1JoFkdAZu3QP7N0NnV9lChoBmgJaA9DCH2utmJ/41HAlIaUUpRoFUtNaBZHQGbvi704BFN1fZQoaAZoCWgPQwhyi/m5oVFZwJSGlFKUaBVLQ2gWR0Bm8Ba/yoXLdX2UKGgGaAloD0MIVpqUgm4ZR8CUhpRSlGgVS0loFkdAZvC4XoC+13V9lChoBmgJaA9DCGZJgJpaI1TAlIaUUpRoFUtFaBZHQGbx1O0svqV1fZQoaAZoCWgPQwiJ8C+CxiFRwJSGlFKUaBVLTmgWR0Bm8mHJtBOYdX2UKGgGaAloD0MIy9dl+E84XcCUhpRSlGgVS0ZoFkdAZvMuxKQJX3V9lChoBmgJaA9DCLExryMORU3AlIaUUpRoFUtsaBZHQGb0hIWgvlF1fZQoaAZoCWgPQwgKLlbUYLlSwJSGlFKUaBVLSWgWR0Bm9dCNS619dX2UKGgGaAloD0MIsBwhA3mOR8CUhpRSlGgVS0doFkdAZvWskIHC43V9lChoBmgJaA9DCL1xUph362DAlIaUUpRoFUteaBZHQGb13lS0jTt1fZQoaAZoCWgPQwjcK/NWXR9SwJSGlFKUaBVLXmgWR0Bm9jreIl+mdX2UKGgGaAloD0MIh8Woa+15PsCUhpRSlGgVS0toFkdAZvZ0fYBeX3V9lChoBmgJaA9DCHIYzF8hL1bAlIaUUpRoFUteaBZHQGb2jXnQpnZ1fZQoaAZoCWgPQwjRCDauf6ZZwJSGlFKUaBVLTmgWR0Bm9sQZn+Q2dX2UKGgGaAloD0MIfjmzXaHzS8CUhpRSlGgVS0ZoFkdAZvpsvZh8Y3V9lChoBmgJaA9DCM3n3O16xVTAlIaUUpRoFUtXaBZHQGb6yXdCVr11fZQoaAZoCWgPQwiGBIwub1FSwJSGlFKUaBVLeGgWR0Bm+1TFVDKHdX2UKGgGaAloD0MIR1hUxOkVVMCUhpRSlGgVS3loFkdAZvuQJXyRS3V9lChoBmgJaA9DCJVkHY6uWljAlIaUUpRoFUtpaBZHQGb7uhkAggZ1fZQoaAZoCWgPQwgTgH9Kla1WwJSGlFKUaBVLZmgWR0Bm+/Td+G47dX2UKGgGaAloD0MIhNOCF30ZWcCUhpRSlGgVS1ZoFkdAZv0YD1XeWXV9lChoBmgJaA9DCCVZh6Or5EvAlIaUUpRoFUtnaBZHQGb9ttqHoHN1fZQoaAZoCWgPQwgsKAzKND1XwJSGlFKUaBVLR2gWR0Bm/miaiKzidX2UKGgGaAloD0MI11HVBFGLWcCUhpRSlGgVS1BoFkdAZv6vN/vv0HV9lChoBmgJaA9DCD2elh+4MErAlIaUUpRoFUtJaBZHQGb/Bd+ocaR1fZQoaAZoCWgPQwgiizTxDqJYwJSGlFKUaBVLXmgWR0Bm/1Y+0PYndX2UKGgGaAloD0MINuZ1xCGyV8CUhpRSlGgVS1JoFkdAZv/LJ0W/J3V9lChoBmgJaA9DCA5pVOBkfVrAlIaUUpRoFUteaBZHQGcBAXMyJsR1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 28,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_lunar_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00ed23a3c882fd8d85b629ad51f56bdb12e9ff17d8113271f03f7b2f250f3943
3
+ size 84829
ppo_lunar_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03959e877c0f62b53fcdcac0a8252cd027e998fd8fcd524a9ba43c288a635889
3
+ size 43201
ppo_lunar_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_lunar_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bbb41a996824bf66fb536edaccdd5523575b0ef15bd4ae2fd2f89ccb7c23114
3
+ size 243418
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 71.55856992045156, "std_reward": 113.41480298121009, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-01T18:15:50.936774"}