benderv commited on
Commit
390be14
·
1 Parent(s): b29f3f5
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 109.01 +/- 116.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8669e405f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8669e40680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8669e40710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8669e407a0>", "_build": "<function ActorCriticPolicy._build at 0x7f8669e40830>", "forward": "<function ActorCriticPolicy.forward at 0x7f8669e408c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8669e40950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8669e409e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8669e40a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8669e40b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8669e40b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f866a180180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668254735169169879, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABNmj0PfmQ/ZhCrusNdnL67KZw8EqUBvgAAAAAAAAAA0PTOPtQBSb09Z247ZIBNuUC7R73DqP44AACAPwAAgD8aLEM9CucduQ7RdLo5ROA1mjOUOrpLkDkAAIA/AACAP81CoL3ihu4+PXKEPToXmr6+AQU+YcyIPQAAAAAAAAAAM/6NPhLhizzgUbe7t/j3uZCIGD6xg6w5AACAPwAAgD8zZp499swPuuoxmzrNw8U043o4OXIJtLkAAIA/AACAP3O05L1Nyrg/LJQfv+ZmA77/ZYm9fnxJvgAAAAAAAAAA5lzIvftgBz9foYq9P8lnvo3kCr6Or6w8AAAAAAAAAAAmJje+vU1kPNO3TT1gvZu7FSgAvnaxmDwAAIA/AACAPwBlVr2PHny6xW+uOhFyHDkZRK+6thbPuQAAgD8AAIA/M6P9vOFawLhiBME7ssObtrdCuzpWx5m1AACAPwAAgD/Gy+s+m1uSPZOHiTx+RUa+u+Msvsw6Ab8AAAAAAACAP5rFhr4unZE7+jPgO/HEdLg87RW9xBO7OQAAgD8AAIA/E1sBP0Bi6T5uyDK8L91FvkMszbwbDe06AAAAAAAAAABAqE++pMhoPFd7HTvZn0S517j6vcWkRLoAAIA/AACAP336vz4cXsk+0jQJPWDgc74Rp5I98433uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYqBrX0C/NECUhpRSlIwBbJRNGQGMAXSUR0CC4YTmnwXqdX2UKGgGaAloD0MIHQQdrWpYWECUhpRSlGgVTegDaBZHQILnczKs+3Z1fZQoaAZoCWgPQwj2fw7z5VheQJSGlFKUaBVN6ANoFkdAgv5CY9gWrXV9lChoBmgJaA9DCA1wQbYs6llAlIaUUpRoFU3oA2gWR0CC/q9du5z6dX2UKGgGaAloD0MIavtXVpriYECUhpRSlGgVTegDaBZHQIMD/i5uqFR1fZQoaAZoCWgPQwiCxHb3AMxaQJSGlFKUaBVN6ANoFkdAgwRBDgIhQnV9lChoBmgJaA9DCOkq3V3nLGJAlIaUUpRoFU3oA2gWR0CDDv8uSOindX2UKGgGaAloD0MIRwN4CyTVYkCUhpRSlGgVTegDaBZHQIMTp3A2ycF1fZQoaAZoCWgPQwidnndjwQ1hQJSGlFKUaBVN6ANoFkdAgx+lHjIaLnV9lChoBmgJaA9DCFT9SufDoy9AlIaUUpRoFU0WAWgWR0CDIslSjxkNdX2UKGgGaAloD0MI9RJjmf4KYUCUhpRSlGgVTegDaBZHQIMoVkrf+CN1fZQoaAZoCWgPQwiel4qNeX9gQJSGlFKUaBVN6ANoFkdAgy10Nz8xbnV9lChoBmgJaA9DCGraxTTTRFpAlIaUUpRoFU3oA2gWR0CDLZ2PDHfedX2UKGgGaAloD0MIKXXJOMbkYECUhpRSlGgVTegDaBZHQIMupdKNAC51fZQoaAZoCWgPQwhAw5s1+GphQJSGlFKUaBVN6ANoFkdAg0FFPrOZ9nV9lChoBmgJaA9DCPkSKji8cCfAlIaUUpRoFUvKaBZHQINFWLWI42l1fZQoaAZoCWgPQwjhC5OpAsFhQJSGlFKUaBVN6ANoFkdAg083NC7btnV9lChoBmgJaA9DCDqvsUtU72FAlIaUUpRoFU3oA2gWR0CDU533YcvNdX2UKGgGaAloD0MIud+hKNA8XECUhpRSlGgVTegDaBZHQIOIMP8Q7Ld1fZQoaAZoCWgPQwjzVIfcDHRgQJSGlFKUaBVN6ANoFkdAg437Q1JlKHV9lChoBmgJaA9DCOcXJegv4l5AlIaUUpRoFU3oA2gWR0CDpScvM8oydX2UKGgGaAloD0MIVFInoImpV0CUhpRSlGgVTegDaBZHQIOq2gte2NN1fZQoaAZoCWgPQwhPWU3XE2JiQJSGlFKUaBVN6ANoFkdAg6smknCwbHV9lChoBmgJaA9DCB5QNuUK8lxAlIaUUpRoFU3oA2gWR0CDtjxbSqlxdX2UKGgGaAloD0MIEAh0Jm0HYUCUhpRSlGgVTegDaBZHQIO7JXjlxOt1fZQoaAZoCWgPQwhgPIOGfoJhQJSGlFKUaBVN6ANoFkdAg8eW9US7G3V9lChoBmgJaA9DCO58PzXeAGdAlIaUUpRoFU3oA2gWR0CDywEGqxTsdX2UKGgGaAloD0MIZaVJKejwYkCUhpRSlGgVTegDaBZHQIPQ13GGVRl1fZQoaAZoCWgPQwjxvFRsTGxhQJSGlFKUaBVN6ANoFkdAg9ZqBmPHUHV9lChoBmgJaA9DCHqqQ26GgVtAlIaUUpRoFU3oA2gWR0CD17U+cH4XdX2UKGgGaAloD0MI6pJxjGRFSkCUhpRSlGgVTToBaBZHQIPhlbTtsvZ1fZQoaAZoCWgPQwhZ94+F6ND/v5SGlFKUaBVNGAFoFkdAg+HT7l7tzHV9lChoBmgJaA9DCGXFcHUAA15AlIaUUpRoFU3oA2gWR0CD8VhVENONdX2UKGgGaAloD0MI0A64rphRM0CUhpRSlGgVS+xoFkdAg/ZiOWBz3nV9lChoBmgJaA9DCJEPejarpFhAlIaUUpRoFU3oA2gWR0CD97wyZa3adX2UKGgGaAloD0MI1gCloUbvZ0CUhpRSlGgVTVQBaBZHQIP9wyM1jy51fZQoaAZoCWgPQwhrZcIv9SZbQJSGlFKUaBVN6ANoFkdAhAZA6uGKynV9lChoBmgJaA9DCCnpYWh1cFdAlIaUUpRoFU3oA2gWR0CECsM0gr6MdX2UKGgGaAloD0MIpREz+zzyV0CUhpRSlGgVTegDaBZHQIQ/utU4rBl1fZQoaAZoCWgPQwh7Lei9MYQOQJSGlFKUaBVNWgFoFkdAhD/EaESM+HV9lChoBmgJaA9DCGLaN/dXc1lAlIaUUpRoFU3oA2gWR0CERYY0l7dBdX2UKGgGaAloD0MIiSZQxCIkWUCUhpRSlGgVTegDaBZHQIRdsghbGFV1fZQoaAZoCWgPQwh15h4SvkxcQJSGlFKUaBVN6ANoFkdAhGRD7ZWaMXV9lChoBmgJaA9DCJEr9SwIBmBAlIaUUpRoFU3oA2gWR0CEZKUWVNYbdX2UKGgGaAloD0MIe/gyUYRkEUCUhpRSlGgVTVgBaBZHQIR/oEGJN0x1fZQoaAZoCWgPQwgZrg6AuJtWQJSGlFKUaBVN6ANoFkdAhJFRcmjTKHV9lChoBmgJaA9DCOs2qP3WcFxAlIaUUpRoFU3oA2gWR0CEnj9Brvb5dX2UKGgGaAloD0MIfXcrS3TlZUCUhpRSlGgVTegDaBZHQISfz0163RZ1fZQoaAZoCWgPQwjFru3tlolfQJSGlFKUaBVN6ANoFkdAhKtHHWBjF3V9lChoBmgJaA9DCA3GiESh1VxAlIaUUpRoFU3oA2gWR0CEuL04BFNMdX2UKGgGaAloD0MIFw6EZAFmW0CUhpRSlGgVTegDaBZHQIS84cJdB0J1fZQoaAZoCWgPQwgAi/z6IelWQJSGlFKUaBVN6ANoFkdAhL3x6Ww/xHV9lChoBmgJaA9DCG8Sg8DK6GBAlIaUUpRoFU3oA2gWR0CEwl2q1gIAdX2UKGgGaAloD0MIUtMuphmTY0CUhpRSlGgVTegDaBZHQITIS9M9KVZ1fZQoaAZoCWgPQwg826M33N5YQJSGlFKUaBVN6ANoFkdAhMx6unuRcXV9lChoBmgJaA9DCPloccawMmBAlIaUUpRoFU3oA2gWR0CFAVQID5j6dX2UKGgGaAloD0MIVMcqpeduYECUhpRSlGgVTegDaBZHQIUBXMUypJh1fZQoaAZoCWgPQwiHokCfyMtCwJSGlFKUaBVNHAFoFkdAhQdYIBzV+nV9lChoBmgJaA9DCGcpWU5CfWFAlIaUUpRoFU3oA2gWR0CFHegEEC/5dX2UKGgGaAloD0MIC3xFt16jWECUhpRSlGgVTegDaBZHQIUj1bqyGBZ1fZQoaAZoCWgPQwh/944aE4leQJSGlFKUaBVN6ANoFkdAhSQerELpinV9lChoBmgJaA9DCJJZvcPtu2BAlIaUUpRoFU3oA2gWR0CFN6kKNQ0odX2UKGgGaAloD0MIY+5aQj78V0CUhpRSlGgVTegDaBZHQIVHbpFCswN1fZQoaAZoCWgPQwj0b5f9unJfQJSGlFKUaBVN6ANoFkdAhVMbLMcIaHV9lChoBmgJaA9DCA360tuf71tAlIaUUpRoFU3oA2gWR0CFVItyPuG9dX2UKGgGaAloD0MI2EroLgngYkCUhpRSlGgVTegDaBZHQIVgl9Dx9Xt1fZQoaAZoCWgPQwgWFtwPeGAgQJSGlFKUaBVNGAFoFkdAhWMDX4CZGHV9lChoBmgJaA9DCGed8X1x219AlIaUUpRoFU3oA2gWR0CFcFQbdadMdX2UKGgGaAloD0MIxXO2gNBlVUCUhpRSlGgVTegDaBZHQIV2SrzXjEN1fZQoaAZoCWgPQwjDLLRzGgpkQJSGlFKUaBVN6ANoFkdAhXup4rz5GnV9lChoBmgJaA9DCNl4sMVuMFZAlIaUUpRoFU3oA2gWR0CFgLapPykLdX2UKGgGaAloD0MIKuW1ErqGVUCUhpRSlGgVTegDaBZHQIWEx88cMmZ1fZQoaAZoCWgPQwjFHW/yW0woQJSGlFKUaBVNMwFoFkdAhYUCvX9R8HV9lChoBmgJaA9DCKAWg4dp/w1AlIaUUpRoFU0hAWgWR0CFjIXBP9DQdX2UKGgGaAloD0MI8KSFyyqQWkCUhpRSlGgVTegDaBZHQIW4PReC04R1fZQoaAZoCWgPQwh5ymq6Hr5hQJSGlFKUaBVN6ANoFkdAhbhB0IToMnV9lChoBmgJaA9DCLFppRBIBWBAlIaUUpRoFU3oA2gWR0CFvb3PAwfydX2UKGgGaAloD0MIxAsiUtOGI8CUhpRSlGgVTWsBaBZHQIXLUsUZeiV1fZQoaAZoCWgPQwhNZryt9EoUQJSGlFKUaBVNNAFoFkdAhc6coQWepXV9lChoBmgJaA9DCIV5jzNNuCnAlIaUUpRoFU1DAWgWR0CF0LJzT4L1dX2UKGgGaAloD0MIEodsIF2qVkCUhpRSlGgVTegDaBZHQIXRLS9du511fZQoaAZoCWgPQwgCZr6DnyA2QJSGlFKUaBVNAgFoFkdAhdFOQIUrTnV9lChoBmgJaA9DCFGGqphKjzxAlIaUUpRoFUv2aBZHQIXUo371qWV1fZQoaAZoCWgPQwjr5XeazPBdQJSGlFKUaBVN6ANoFkdAhdWm7Bfrr3V9lChoBmgJaA9DCO7uAboveV1AlIaUUpRoFU3oA2gWR0CF1d6qKgqWdX2UKGgGaAloD0MINjy9UpZpRcCUhpRSlGgVS+5oFkdAhdiXTuv2XnV9lChoBmgJaA9DCFIpdjQOPSfAlIaUUpRoFU0aAWgWR0CF6seEIw/QdX2UKGgGaAloD0MInglNEkt3XECUhpRSlGgVTegDaBZHQIXscHhS9/V1fZQoaAZoCWgPQwjTFAFO7ytcQJSGlFKUaBVN6ANoFkdAhfYvmPo3aXV9lChoBmgJaA9DCEaaeAd4ijHAlIaUUpRoFU1rAWgWR0CF9pDKoybhdX2UKGgGaAloD0MILev+sRDfW0CUhpRSlGgVTegDaBZHQIYAsr7O3Uh1fZQoaAZoCWgPQwhczM8NTUdFwJSGlFKUaBVLtmgWR0CGAPfD1oQGdX2UKGgGaAloD0MIa5vicVEOaECUhpRSlGgVTR8CaBZHQIYHcPhAGB51fZQoaAZoCWgPQwhEGD+Ne6ZjQJSGlFKUaBVN6ANoFkdAhgrIKlYU4HV9lChoBmgJaA9DCH8SnzvBuVpAlIaUUpRoFU3oA2gWR0CGDpNW2gFpdX2UKGgGaAloD0MIprkVwmqsLcCUhpRSlGgVTTMBaBZHQIYRHQWvbGp1fZQoaAZoCWgPQwiIn/8evDYVQJSGlFKUaBVNBAFoFkdAhhUv0qYqonV9lChoBmgJaA9DCO2DLAsmtlhAlIaUUpRoFU3oA2gWR0CGFxzRQaaTdX2UKGgGaAloD0MI5UF6ihziLUCUhpRSlGgVS/RoFkdAhhxXj+717XV9lChoBmgJaA9DCCfeAZ60IBfAlIaUUpRoFUvjaBZHQIYjZvR7Z391ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc72f0fd887df28e44909f115910abaf07a061e1924b02b1e396786343e81910
3
+ size 147146
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8669e405f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8669e40680>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8669e40710>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8669e407a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8669e40830>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8669e408c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8669e40950>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8669e409e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8669e40a70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8669e40b00>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8669e40b90>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f866a180180>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1668254735169169879,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABNmj0PfmQ/ZhCrusNdnL67KZw8EqUBvgAAAAAAAAAA0PTOPtQBSb09Z247ZIBNuUC7R73DqP44AACAPwAAgD8aLEM9CucduQ7RdLo5ROA1mjOUOrpLkDkAAIA/AACAP81CoL3ihu4+PXKEPToXmr6+AQU+YcyIPQAAAAAAAAAAM/6NPhLhizzgUbe7t/j3uZCIGD6xg6w5AACAPwAAgD8zZp499swPuuoxmzrNw8U043o4OXIJtLkAAIA/AACAP3O05L1Nyrg/LJQfv+ZmA77/ZYm9fnxJvgAAAAAAAAAA5lzIvftgBz9foYq9P8lnvo3kCr6Or6w8AAAAAAAAAAAmJje+vU1kPNO3TT1gvZu7FSgAvnaxmDwAAIA/AACAPwBlVr2PHny6xW+uOhFyHDkZRK+6thbPuQAAgD8AAIA/M6P9vOFawLhiBME7ssObtrdCuzpWx5m1AACAPwAAgD/Gy+s+m1uSPZOHiTx+RUa+u+Msvsw6Ab8AAAAAAACAP5rFhr4unZE7+jPgO/HEdLg87RW9xBO7OQAAgD8AAIA/E1sBP0Bi6T5uyDK8L91FvkMszbwbDe06AAAAAAAAAABAqE++pMhoPFd7HTvZn0S517j6vcWkRLoAAIA/AACAP336vz4cXsk+0jQJPWDgc74Rp5I98433uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYqBrX0C/NECUhpRSlIwBbJRNGQGMAXSUR0CC4YTmnwXqdX2UKGgGaAloD0MIHQQdrWpYWECUhpRSlGgVTegDaBZHQILnczKs+3Z1fZQoaAZoCWgPQwj2fw7z5VheQJSGlFKUaBVN6ANoFkdAgv5CY9gWrXV9lChoBmgJaA9DCA1wQbYs6llAlIaUUpRoFU3oA2gWR0CC/q9du5z6dX2UKGgGaAloD0MIavtXVpriYECUhpRSlGgVTegDaBZHQIMD/i5uqFR1fZQoaAZoCWgPQwiCxHb3AMxaQJSGlFKUaBVN6ANoFkdAgwRBDgIhQnV9lChoBmgJaA9DCOkq3V3nLGJAlIaUUpRoFU3oA2gWR0CDDv8uSOindX2UKGgGaAloD0MIRwN4CyTVYkCUhpRSlGgVTegDaBZHQIMTp3A2ycF1fZQoaAZoCWgPQwidnndjwQ1hQJSGlFKUaBVN6ANoFkdAgx+lHjIaLnV9lChoBmgJaA9DCFT9SufDoy9AlIaUUpRoFU0WAWgWR0CDIslSjxkNdX2UKGgGaAloD0MI9RJjmf4KYUCUhpRSlGgVTegDaBZHQIMoVkrf+CN1fZQoaAZoCWgPQwiel4qNeX9gQJSGlFKUaBVN6ANoFkdAgy10Nz8xbnV9lChoBmgJaA9DCGraxTTTRFpAlIaUUpRoFU3oA2gWR0CDLZ2PDHfedX2UKGgGaAloD0MIKXXJOMbkYECUhpRSlGgVTegDaBZHQIMupdKNAC51fZQoaAZoCWgPQwhAw5s1+GphQJSGlFKUaBVN6ANoFkdAg0FFPrOZ9nV9lChoBmgJaA9DCPkSKji8cCfAlIaUUpRoFUvKaBZHQINFWLWI42l1fZQoaAZoCWgPQwjhC5OpAsFhQJSGlFKUaBVN6ANoFkdAg083NC7btnV9lChoBmgJaA9DCDqvsUtU72FAlIaUUpRoFU3oA2gWR0CDU533YcvNdX2UKGgGaAloD0MIud+hKNA8XECUhpRSlGgVTegDaBZHQIOIMP8Q7Ld1fZQoaAZoCWgPQwjzVIfcDHRgQJSGlFKUaBVN6ANoFkdAg437Q1JlKHV9lChoBmgJaA9DCOcXJegv4l5AlIaUUpRoFU3oA2gWR0CDpScvM8oydX2UKGgGaAloD0MIVFInoImpV0CUhpRSlGgVTegDaBZHQIOq2gte2NN1fZQoaAZoCWgPQwhPWU3XE2JiQJSGlFKUaBVN6ANoFkdAg6smknCwbHV9lChoBmgJaA9DCB5QNuUK8lxAlIaUUpRoFU3oA2gWR0CDtjxbSqlxdX2UKGgGaAloD0MIEAh0Jm0HYUCUhpRSlGgVTegDaBZHQIO7JXjlxOt1fZQoaAZoCWgPQwhgPIOGfoJhQJSGlFKUaBVN6ANoFkdAg8eW9US7G3V9lChoBmgJaA9DCO58PzXeAGdAlIaUUpRoFU3oA2gWR0CDywEGqxTsdX2UKGgGaAloD0MIZaVJKejwYkCUhpRSlGgVTegDaBZHQIPQ13GGVRl1fZQoaAZoCWgPQwjxvFRsTGxhQJSGlFKUaBVN6ANoFkdAg9ZqBmPHUHV9lChoBmgJaA9DCHqqQ26GgVtAlIaUUpRoFU3oA2gWR0CD17U+cH4XdX2UKGgGaAloD0MI6pJxjGRFSkCUhpRSlGgVTToBaBZHQIPhlbTtsvZ1fZQoaAZoCWgPQwhZ94+F6ND/v5SGlFKUaBVNGAFoFkdAg+HT7l7tzHV9lChoBmgJaA9DCGXFcHUAA15AlIaUUpRoFU3oA2gWR0CD8VhVENONdX2UKGgGaAloD0MI0A64rphRM0CUhpRSlGgVS+xoFkdAg/ZiOWBz3nV9lChoBmgJaA9DCJEPejarpFhAlIaUUpRoFU3oA2gWR0CD97wyZa3adX2UKGgGaAloD0MI1gCloUbvZ0CUhpRSlGgVTVQBaBZHQIP9wyM1jy51fZQoaAZoCWgPQwhrZcIv9SZbQJSGlFKUaBVN6ANoFkdAhAZA6uGKynV9lChoBmgJaA9DCCnpYWh1cFdAlIaUUpRoFU3oA2gWR0CECsM0gr6MdX2UKGgGaAloD0MIpREz+zzyV0CUhpRSlGgVTegDaBZHQIQ/utU4rBl1fZQoaAZoCWgPQwh7Lei9MYQOQJSGlFKUaBVNWgFoFkdAhD/EaESM+HV9lChoBmgJaA9DCGLaN/dXc1lAlIaUUpRoFU3oA2gWR0CERYY0l7dBdX2UKGgGaAloD0MIiSZQxCIkWUCUhpRSlGgVTegDaBZHQIRdsghbGFV1fZQoaAZoCWgPQwh15h4SvkxcQJSGlFKUaBVN6ANoFkdAhGRD7ZWaMXV9lChoBmgJaA9DCJEr9SwIBmBAlIaUUpRoFU3oA2gWR0CEZKUWVNYbdX2UKGgGaAloD0MIe/gyUYRkEUCUhpRSlGgVTVgBaBZHQIR/oEGJN0x1fZQoaAZoCWgPQwgZrg6AuJtWQJSGlFKUaBVN6ANoFkdAhJFRcmjTKHV9lChoBmgJaA9DCOs2qP3WcFxAlIaUUpRoFU3oA2gWR0CEnj9Brvb5dX2UKGgGaAloD0MIfXcrS3TlZUCUhpRSlGgVTegDaBZHQISfz0163RZ1fZQoaAZoCWgPQwjFru3tlolfQJSGlFKUaBVN6ANoFkdAhKtHHWBjF3V9lChoBmgJaA9DCA3GiESh1VxAlIaUUpRoFU3oA2gWR0CEuL04BFNMdX2UKGgGaAloD0MIFw6EZAFmW0CUhpRSlGgVTegDaBZHQIS84cJdB0J1fZQoaAZoCWgPQwgAi/z6IelWQJSGlFKUaBVN6ANoFkdAhL3x6Ww/xHV9lChoBmgJaA9DCG8Sg8DK6GBAlIaUUpRoFU3oA2gWR0CEwl2q1gIAdX2UKGgGaAloD0MIUtMuphmTY0CUhpRSlGgVTegDaBZHQITIS9M9KVZ1fZQoaAZoCWgPQwg826M33N5YQJSGlFKUaBVN6ANoFkdAhMx6unuRcXV9lChoBmgJaA9DCPloccawMmBAlIaUUpRoFU3oA2gWR0CFAVQID5j6dX2UKGgGaAloD0MIVMcqpeduYECUhpRSlGgVTegDaBZHQIUBXMUypJh1fZQoaAZoCWgPQwiHokCfyMtCwJSGlFKUaBVNHAFoFkdAhQdYIBzV+nV9lChoBmgJaA9DCGcpWU5CfWFAlIaUUpRoFU3oA2gWR0CFHegEEC/5dX2UKGgGaAloD0MIC3xFt16jWECUhpRSlGgVTegDaBZHQIUj1bqyGBZ1fZQoaAZoCWgPQwh/944aE4leQJSGlFKUaBVN6ANoFkdAhSQerELpinV9lChoBmgJaA9DCJJZvcPtu2BAlIaUUpRoFU3oA2gWR0CFN6kKNQ0odX2UKGgGaAloD0MIY+5aQj78V0CUhpRSlGgVTegDaBZHQIVHbpFCswN1fZQoaAZoCWgPQwj0b5f9unJfQJSGlFKUaBVN6ANoFkdAhVMbLMcIaHV9lChoBmgJaA9DCA360tuf71tAlIaUUpRoFU3oA2gWR0CFVItyPuG9dX2UKGgGaAloD0MI2EroLgngYkCUhpRSlGgVTegDaBZHQIVgl9Dx9Xt1fZQoaAZoCWgPQwgWFtwPeGAgQJSGlFKUaBVNGAFoFkdAhWMDX4CZGHV9lChoBmgJaA9DCGed8X1x219AlIaUUpRoFU3oA2gWR0CFcFQbdadMdX2UKGgGaAloD0MIxXO2gNBlVUCUhpRSlGgVTegDaBZHQIV2SrzXjEN1fZQoaAZoCWgPQwjDLLRzGgpkQJSGlFKUaBVN6ANoFkdAhXup4rz5GnV9lChoBmgJaA9DCNl4sMVuMFZAlIaUUpRoFU3oA2gWR0CFgLapPykLdX2UKGgGaAloD0MIKuW1ErqGVUCUhpRSlGgVTegDaBZHQIWEx88cMmZ1fZQoaAZoCWgPQwjFHW/yW0woQJSGlFKUaBVNMwFoFkdAhYUCvX9R8HV9lChoBmgJaA9DCKAWg4dp/w1AlIaUUpRoFU0hAWgWR0CFjIXBP9DQdX2UKGgGaAloD0MI8KSFyyqQWkCUhpRSlGgVTegDaBZHQIW4PReC04R1fZQoaAZoCWgPQwh5ymq6Hr5hQJSGlFKUaBVN6ANoFkdAhbhB0IToMnV9lChoBmgJaA9DCLFppRBIBWBAlIaUUpRoFU3oA2gWR0CFvb3PAwfydX2UKGgGaAloD0MIxAsiUtOGI8CUhpRSlGgVTWsBaBZHQIXLUsUZeiV1fZQoaAZoCWgPQwhNZryt9EoUQJSGlFKUaBVNNAFoFkdAhc6coQWepXV9lChoBmgJaA9DCIV5jzNNuCnAlIaUUpRoFU1DAWgWR0CF0LJzT4L1dX2UKGgGaAloD0MIEodsIF2qVkCUhpRSlGgVTegDaBZHQIXRLS9du511fZQoaAZoCWgPQwgCZr6DnyA2QJSGlFKUaBVNAgFoFkdAhdFOQIUrTnV9lChoBmgJaA9DCFGGqphKjzxAlIaUUpRoFUv2aBZHQIXUo371qWV1fZQoaAZoCWgPQwjr5XeazPBdQJSGlFKUaBVN6ANoFkdAhdWm7Bfrr3V9lChoBmgJaA9DCO7uAboveV1AlIaUUpRoFU3oA2gWR0CF1d6qKgqWdX2UKGgGaAloD0MINjy9UpZpRcCUhpRSlGgVS+5oFkdAhdiXTuv2XnV9lChoBmgJaA9DCFIpdjQOPSfAlIaUUpRoFU0aAWgWR0CF6seEIw/QdX2UKGgGaAloD0MInglNEkt3XECUhpRSlGgVTegDaBZHQIXscHhS9/V1fZQoaAZoCWgPQwjTFAFO7ytcQJSGlFKUaBVN6ANoFkdAhfYvmPo3aXV9lChoBmgJaA9DCEaaeAd4ijHAlIaUUpRoFU1rAWgWR0CF9pDKoybhdX2UKGgGaAloD0MILev+sRDfW0CUhpRSlGgVTegDaBZHQIYAsr7O3Uh1fZQoaAZoCWgPQwhczM8NTUdFwJSGlFKUaBVLtmgWR0CGAPfD1oQGdX2UKGgGaAloD0MIa5vicVEOaECUhpRSlGgVTR8CaBZHQIYHcPhAGB51fZQoaAZoCWgPQwhEGD+Ne6ZjQJSGlFKUaBVN6ANoFkdAhgrIKlYU4HV9lChoBmgJaA9DCH8SnzvBuVpAlIaUUpRoFU3oA2gWR0CGDpNW2gFpdX2UKGgGaAloD0MIprkVwmqsLcCUhpRSlGgVTTMBaBZHQIYRHQWvbGp1fZQoaAZoCWgPQwiIn/8evDYVQJSGlFKUaBVNBAFoFkdAhhUv0qYqonV9lChoBmgJaA9DCO2DLAsmtlhAlIaUUpRoFU3oA2gWR0CGFxzRQaaTdX2UKGgGaAloD0MI5UF6ihziLUCUhpRSlGgVS/RoFkdAhhxXj+717XV9lChoBmgJaA9DCCfeAZ60IBfAlIaUUpRoFUvjaBZHQIYjZvR7Z391ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6ae9e57e40b2760a54e26d4f0b57ba0f3788a4565075aa8a9d702098b00590f
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc9c22c087be3a16555d5b6490fa45050a2c83ac519d49488d6ab26e6ffd1a50
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (251 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 109.00570847023837, "std_reward": 116.81544707908606, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-12T12:21:13.299724"}