berfinduman
commited on
Commit
·
1590525
1
Parent(s):
cfa6d57
Upload 2 files
Browse files- evaluation_comp.py +213 -0
- finalberturk_ensemble.py +296 -0
evaluation_comp.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""evaluation_comp.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1qD1t_GF67fbwftmUYfuMDpwVFICPk5kJ
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install gradio
|
11 |
+
|
12 |
+
!pip install transformers
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
import pandas as pd
|
16 |
+
from torch import nn
|
17 |
+
from transformers import BertModel
|
18 |
+
from transformers import BertTokenizer
|
19 |
+
from sklearn.metrics import f1_score
|
20 |
+
import torch
|
21 |
+
import nltk
|
22 |
+
nltk.download(['punkt', 'stopwords'])
|
23 |
+
import re
|
24 |
+
|
25 |
+
def remove_short_strings(df:pd.DataFrame, string_column:str)->pd.DataFrame:
|
26 |
+
df[string_column] = df[string_column].astype(str)
|
27 |
+
df['length'] = df[string_column].str.len()
|
28 |
+
df = df.drop(df[df['length'] == 1].index)
|
29 |
+
df = df.drop(columns=['length'])
|
30 |
+
return df
|
31 |
+
def remove_one_character_words(row):
|
32 |
+
words = row['text'].split()
|
33 |
+
return ' '.join([word for word in words if len(word) > 1])
|
34 |
+
def ret_list_to_str(liste):
|
35 |
+
return " ".join (i for i in liste)
|
36 |
+
def preprocess_tweet(tweet):
|
37 |
+
# Convert to lower case
|
38 |
+
tweet = tweet.lower()
|
39 |
+
# Replace repeating characters
|
40 |
+
tweet = re.sub(r'(.)\1+', r'\1\1', tweet)
|
41 |
+
# Remove non-Turkish characters
|
42 |
+
tweet = re.sub(r'[^a-zA-ZçÇğĞıİöÖşŞüÜ\s]', '', tweet)
|
43 |
+
# Remove extra whitespaces
|
44 |
+
tweet = re.sub(r'\s+', ' ', tweet).strip()
|
45 |
+
return tweet
|
46 |
+
def cleaning_stopwords(text,stop_words):
|
47 |
+
return " ".join([word for word in str(text).split() if word not in stop_words])
|
48 |
+
from nltk.corpus import stopwords
|
49 |
+
# Türkçe stop words
|
50 |
+
turkish_stopwords = stopwords.words('turkish')
|
51 |
+
turkish_stopwords.append("bir")
|
52 |
+
turkish_stopwords=set(turkish_stopwords)
|
53 |
+
##burada saçma kelimeler var bunu kullanmayalım
|
54 |
+
|
55 |
+
|
56 |
+
from sklearn import preprocessing
|
57 |
+
from nltk.tokenize import word_tokenize
|
58 |
+
|
59 |
+
|
60 |
+
def prep_and_sw_and_tokenize(df):
|
61 |
+
|
62 |
+
turkish_stopwords = stopwords.words('turkish')
|
63 |
+
turkish_stopwords.append("bir")
|
64 |
+
stop_words=set(turkish_stopwords)
|
65 |
+
df["text"]=df["text"].apply(preprocess_tweet)
|
66 |
+
df['text'] = df["text"].apply(lambda text: cleaning_stopwords(text,stop_words))
|
67 |
+
|
68 |
+
#df['text'] = df.apply(remove_one_character_words, axis=1)
|
69 |
+
|
70 |
+
|
71 |
+
return df
|
72 |
+
|
73 |
+
tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-turkish-128k-uncased")
|
74 |
+
class BertClassifierConv1D(nn.Module):
|
75 |
+
def __init__(self, dropout=0.5, num_classes=5):
|
76 |
+
super(BertClassifierConv1D, self).__init__()
|
77 |
+
|
78 |
+
self.bert = BertModel.from_pretrained('dbmdz/bert-base-turkish-128k-uncased', return_dict=True)
|
79 |
+
self.conv1d = nn.Conv1d(in_channels=self.bert.config.hidden_size, out_channels=128, kernel_size=5)
|
80 |
+
self.bilstm = nn.LSTM(input_size=128, hidden_size=64, num_layers=1, bidirectional=True, batch_first=True)
|
81 |
+
self.dropout = nn.Dropout(dropout)
|
82 |
+
self.linear = nn.Linear(128, num_classes)
|
83 |
+
|
84 |
+
def forward(self, input_id, mask):
|
85 |
+
output = self.bert(input_ids=input_id, attention_mask=mask).last_hidden_state
|
86 |
+
output = output.permute(0, 2, 1) # swap dimensions to prepare for Conv1d layer
|
87 |
+
output = self.conv1d(output)
|
88 |
+
output, _ = self.bilstm(output.transpose(1, 2))
|
89 |
+
output = self.dropout(output)
|
90 |
+
output = self.linear(output.mean(dim=1))
|
91 |
+
return output
|
92 |
+
class Dataset(torch.utils.data.Dataset):
|
93 |
+
def __init__(self, df):
|
94 |
+
self.texts = [tokenizer(text, padding='max_length', max_length=512, truncation=True, return_tensors="pt") for text in df]
|
95 |
+
|
96 |
+
def __len__(self):
|
97 |
+
return len(self.texts)
|
98 |
+
|
99 |
+
def __getitem__(self, idx):
|
100 |
+
batch_texts = self.texts[idx]
|
101 |
+
return batch_texts
|
102 |
+
def evaluate(model, test_data):
|
103 |
+
|
104 |
+
test = Dataset(test_data)
|
105 |
+
|
106 |
+
test_dataloader = torch.utils.data.DataLoader(test, batch_size=32)
|
107 |
+
|
108 |
+
#use_cuda = torch.cuda.is_available()
|
109 |
+
#device = torch.device("cuda" if use_cuda else "cpu")
|
110 |
+
device= torch.device("cpu")
|
111 |
+
|
112 |
+
#if use_cuda:
|
113 |
+
|
114 |
+
# model = model.cuda()
|
115 |
+
|
116 |
+
total_acc_test = 0
|
117 |
+
output_indices = []
|
118 |
+
with torch.no_grad():
|
119 |
+
|
120 |
+
for test_input in test_dataloader:
|
121 |
+
|
122 |
+
mask = test_input['attention_mask'].to(device)
|
123 |
+
input_id = test_input['input_ids'].squeeze(1).to(device)
|
124 |
+
|
125 |
+
output = model(input_id, mask)
|
126 |
+
|
127 |
+
|
128 |
+
batch_indices = output.argmax(dim=1).tolist()
|
129 |
+
output_indices.extend(batch_indices)
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
return output_indices
|
134 |
+
|
135 |
+
def auth(username, password):
|
136 |
+
if username == "Hive_Hereos" and password == "Y2IB3HV8GBXED00S":
|
137 |
+
return True
|
138 |
+
else:
|
139 |
+
return False
|
140 |
+
|
141 |
+
global model
|
142 |
+
model =BertClassifierConv1D()
|
143 |
+
|
144 |
+
model.load_state_dict(torch.load(r"sontotalmodel_finallll.pt", map_location=torch.device('cpu')))
|
145 |
+
|
146 |
+
import logging
|
147 |
+
logging.basicConfig(filename=r'app.log', filemode='w', format='%(asctime)s - %(message)s', level=logging.INFO)
|
148 |
+
|
149 |
+
|
150 |
+
def predict(df):
|
151 |
+
# TODO:
|
152 |
+
df["offensive"] = 1
|
153 |
+
df["target"] = None
|
154 |
+
# ***************************
|
155 |
+
try:
|
156 |
+
# WRITE YOUR INFERENCE STEPS BELOW # HERE
|
157 |
+
text=df["text"]
|
158 |
+
df=prep_and_sw_and_tokenize(df)
|
159 |
+
#df.to_csv("preprocess.csv", index=False, sep="|")
|
160 |
+
labels = {'INSULT':0,
|
161 |
+
'OTHER':1,
|
162 |
+
'PROFANITY':2,
|
163 |
+
'RACIST':3,
|
164 |
+
'SEXIST':4
|
165 |
+
}
|
166 |
+
logging.info("Başlıyoruz")
|
167 |
+
|
168 |
+
logging.info("Model yüklendi")
|
169 |
+
logging.info(df.text)
|
170 |
+
a=evaluate(model, df["text"])
|
171 |
+
|
172 |
+
test_labels=[]
|
173 |
+
for number in a:
|
174 |
+
label = list(labels.keys())[list(labels.values()).index(number)] # Sayıyı etikete dönüştürüyoruz.
|
175 |
+
test_labels.append(label) # Yeni etiketi listeye ekliyoruz.
|
176 |
+
df["target"]=test_labels
|
177 |
+
|
178 |
+
for index, row in df.iterrows():
|
179 |
+
if row['target'] == 'OTHER':
|
180 |
+
df.at[index, 'offensive'] = 0
|
181 |
+
df["text"]=text
|
182 |
+
except Exception as e:
|
183 |
+
logging.error("Error occurred", exc_info=True)
|
184 |
+
raise e
|
185 |
+
#
|
186 |
+
# *********** END ***********
|
187 |
+
|
188 |
+
|
189 |
+
return df
|
190 |
+
|
191 |
+
def get_file(file):
|
192 |
+
output_file = "output_Hive_Hereos.csv"
|
193 |
+
|
194 |
+
# For windows users, replace path seperator
|
195 |
+
file_name = file.name.replace("\\", "/")
|
196 |
+
|
197 |
+
df = pd.read_csv(file_name, sep="|")
|
198 |
+
|
199 |
+
predict(df)
|
200 |
+
df.to_csv(output_file, index=False, sep="|")
|
201 |
+
return (output_file)
|
202 |
+
|
203 |
+
# Launch the interface with user password
|
204 |
+
iface = gr.Interface(get_file, "file", "file")
|
205 |
+
|
206 |
+
if __name__ == "__main__":
|
207 |
+
iface.launch(share=True, auth=auth,debug=True)
|
208 |
+
|
209 |
+
iface.close()
|
210 |
+
|
211 |
+
import session_info
|
212 |
+
session_info.show()
|
213 |
+
|
finalberturk_ensemble.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""FINALberturk_ensemble.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1yAhhmVl42CAD5BCvUCtjMO7utTU2cGqE
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install transformers
|
11 |
+
|
12 |
+
# Commented out IPython magic to ensure Python compatibility.
|
13 |
+
import numpy as np # linear algebra
|
14 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
15 |
+
|
16 |
+
#For EDA
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import seaborn as sns
|
19 |
+
|
20 |
+
# Packages for general use throughout the notebook.
|
21 |
+
import random
|
22 |
+
import warnings
|
23 |
+
import time
|
24 |
+
# %matplotlib inline
|
25 |
+
from sklearn.model_selection import train_test_split
|
26 |
+
|
27 |
+
# to see columns properly
|
28 |
+
pd.set_option('display.max_colwidth', None)
|
29 |
+
|
30 |
+
# for build our model
|
31 |
+
import tensorflow as tf
|
32 |
+
from tensorflow.keras.layers import Add, GlobalAvgPool1D, MaxPool1D, Activation, BatchNormalization, Embedding, LSTM, Dense, Bidirectional, Input, SpatialDropout1D, Dropout, Conv1D
|
33 |
+
from tensorflow.keras import Model
|
34 |
+
from transformers import BertTokenizer, TFBertModel
|
35 |
+
from tensorflow.keras.activations import relu
|
36 |
+
|
37 |
+
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score, f1_score
|
38 |
+
|
39 |
+
|
40 |
+
# Input data files are available in the read-only "../input/" directory
|
41 |
+
import os
|
42 |
+
for dirname, _, filenames in os.walk('/kaggle/input'):
|
43 |
+
for filename in filenames:
|
44 |
+
print(os.path.join(dirname, filename))
|
45 |
+
|
46 |
+
import torch
|
47 |
+
import numpy as np
|
48 |
+
from transformers import BertTokenizer, BertModel
|
49 |
+
import time
|
50 |
+
from datetime import datetime
|
51 |
+
import matplotlib.pyplot as plt
|
52 |
+
import torch
|
53 |
+
import torch.nn as nn
|
54 |
+
from torch.optim import Adam
|
55 |
+
from tqdm import tqdm
|
56 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
57 |
+
|
58 |
+
!pip install session_info
|
59 |
+
|
60 |
+
import session_info
|
61 |
+
session_info.show()
|
62 |
+
|
63 |
+
dataset = pd.read_csv(r"train_with_preprocess.csv")
|
64 |
+
dataset
|
65 |
+
|
66 |
+
df=dataset[[ "first_p_sec_sw","target"]]
|
67 |
+
df.columns=["text","target"]
|
68 |
+
df
|
69 |
+
|
70 |
+
tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-turkish-128k-uncased")
|
71 |
+
|
72 |
+
labels = {'INSULT':0,
|
73 |
+
'OTHER':1,
|
74 |
+
'PROFANITY':2,
|
75 |
+
'RACIST':3,
|
76 |
+
'SEXIST':4
|
77 |
+
}
|
78 |
+
|
79 |
+
class Dataset(torch.utils.data.Dataset):
|
80 |
+
|
81 |
+
def __init__(self, df):
|
82 |
+
|
83 |
+
self.labels = [labels[label] for label in df['target']]
|
84 |
+
self.texts = [tokenizer(text,
|
85 |
+
padding='max_length', max_length = 512, truncation=True,
|
86 |
+
return_tensors="pt") for text in df['text']]
|
87 |
+
|
88 |
+
def classes(self):
|
89 |
+
return self.labels
|
90 |
+
|
91 |
+
def __len__(self):
|
92 |
+
return len(self.labels)
|
93 |
+
|
94 |
+
def get_batch_labels(self, idx):
|
95 |
+
# Fetch a batch of labels
|
96 |
+
return np.array(self.labels[idx])
|
97 |
+
|
98 |
+
def get_batch_texts(self, idx):
|
99 |
+
# Fetch a batch of inputs
|
100 |
+
return self.texts[idx]
|
101 |
+
|
102 |
+
def __getitem__(self, idx):
|
103 |
+
|
104 |
+
batch_texts = self.get_batch_texts(idx)
|
105 |
+
batch_y = self.get_batch_labels(idx)
|
106 |
+
|
107 |
+
return batch_texts, batch_y
|
108 |
+
|
109 |
+
np.random.seed(112)
|
110 |
+
df_train, df_val, df_test = np.split(df.sample(frac=1, random_state=42),
|
111 |
+
[int(.8*len(df)), int(.9*len(df))])
|
112 |
+
|
113 |
+
print(len(df_train),len(df_val), len(df_test))
|
114 |
+
|
115 |
+
class BertClassifierConv1D(nn.Module):
|
116 |
+
def __init__(self, dropout=0.5, num_classes=5):
|
117 |
+
super(BertClassifierConv1D, self).__init__()
|
118 |
+
|
119 |
+
self.bert = BertModel.from_pretrained('dbmdz/bert-base-turkish-128k-uncased', return_dict=True)
|
120 |
+
self.conv1d = nn.Conv1d(in_channels=self.bert.config.hidden_size, out_channels=128, kernel_size=5)
|
121 |
+
self.bilstm = nn.LSTM(input_size=128, hidden_size=64, num_layers=1, bidirectional=True, batch_first=True)
|
122 |
+
self.dropout = nn.Dropout(dropout)
|
123 |
+
self.linear = nn.Linear(128, num_classes)
|
124 |
+
|
125 |
+
def forward(self, input_id, mask):
|
126 |
+
output = self.bert(input_ids=input_id, attention_mask=mask).last_hidden_state
|
127 |
+
output = output.permute(0, 2, 1) # swap dimensions to prepare for Conv1d layer
|
128 |
+
output = self.conv1d(output)
|
129 |
+
output, _ = self.bilstm(output.transpose(1, 2))
|
130 |
+
output = self.dropout(output)
|
131 |
+
output = self.linear(output.mean(dim=1))
|
132 |
+
return output
|
133 |
+
|
134 |
+
def plot_graphs(history, string):
|
135 |
+
plt.plot(history[string])
|
136 |
+
plt.plot(history['val_'+string])
|
137 |
+
plt.xlabel("Epochs")
|
138 |
+
plt.ylabel(string)
|
139 |
+
plt.legend([string, 'val_'+string])
|
140 |
+
plt.show()
|
141 |
+
|
142 |
+
def train(model, train_data, val_data, learning_rate, epochs,patience=3):
|
143 |
+
|
144 |
+
train, val = Dataset(train_data), Dataset(val_data)
|
145 |
+
|
146 |
+
train_dataloader = torch.utils.data.DataLoader(train, batch_size=32, shuffle=True)
|
147 |
+
val_dataloader = torch.utils.data.DataLoader(val, batch_size=32)
|
148 |
+
|
149 |
+
use_cuda = torch.cuda.is_available()
|
150 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
151 |
+
|
152 |
+
criterion = nn.CrossEntropyLoss()
|
153 |
+
optimizer = Adam(model.parameters(), lr= learning_rate)
|
154 |
+
|
155 |
+
if use_cuda:
|
156 |
+
model = model.cuda()
|
157 |
+
criterion = criterion.cuda()
|
158 |
+
|
159 |
+
history = {'loss': [], 'accuracy': [], 'val_loss': [], 'val_accuracy': []}
|
160 |
+
best_val_loss = float('inf')
|
161 |
+
counter = 0
|
162 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=5, factor=0.1, verbose=True, cooldown=0)
|
163 |
+
|
164 |
+
for epoch_num in range(epochs):
|
165 |
+
|
166 |
+
total_acc_train = 0
|
167 |
+
total_loss_train = 0
|
168 |
+
|
169 |
+
for train_input, train_label in tqdm(train_dataloader):
|
170 |
+
|
171 |
+
train_label = train_label.to(device)
|
172 |
+
mask = train_input['attention_mask'].to(device)
|
173 |
+
input_id = train_input['input_ids'].squeeze(1).to(device)
|
174 |
+
|
175 |
+
output = model(input_id, mask)
|
176 |
+
|
177 |
+
batch_loss = criterion(output, train_label.long())
|
178 |
+
total_loss_train += batch_loss.item()
|
179 |
+
|
180 |
+
acc = (output.argmax(dim=1) == train_label).sum().item()
|
181 |
+
total_acc_train += acc
|
182 |
+
|
183 |
+
model.zero_grad()
|
184 |
+
batch_loss.backward()
|
185 |
+
optimizer.step()
|
186 |
+
|
187 |
+
total_acc_val = 0
|
188 |
+
total_loss_val = 0
|
189 |
+
|
190 |
+
with torch.no_grad():
|
191 |
+
|
192 |
+
for val_input, val_label in val_dataloader:
|
193 |
+
|
194 |
+
val_label = val_label.to(device)
|
195 |
+
mask = val_input['attention_mask'].to(device)
|
196 |
+
input_id = val_input['input_ids'].squeeze(1).to(device)
|
197 |
+
|
198 |
+
output = model(input_id, mask)
|
199 |
+
|
200 |
+
batch_loss = criterion(output, val_label.long())
|
201 |
+
total_loss_val += batch_loss.item()
|
202 |
+
|
203 |
+
acc = (output.argmax(dim=1) == val_label).sum().item()
|
204 |
+
total_acc_val += acc
|
205 |
+
|
206 |
+
train_loss = total_loss_train / len(train_data)
|
207 |
+
train_acc = total_acc_train / len(train_data)
|
208 |
+
val_loss = total_loss_val / len(val_data)
|
209 |
+
val_acc = total_acc_val / len(val_data)
|
210 |
+
history['loss'].append(train_loss)
|
211 |
+
history['accuracy'].append(train_acc)
|
212 |
+
history['val_loss'].append(val_loss)
|
213 |
+
history['val_accuracy'].append(val_acc)
|
214 |
+
print(f'Epochs: {epoch_num + 1} | Train Loss: {train_loss:.3f} | Train Accuracy: {train_acc:.3f} | Val Loss: {val_loss:.3f} | Val Accuracy: {val_acc:.3f}')
|
215 |
+
if val_loss < best_val_loss:
|
216 |
+
best_val_loss = val_loss
|
217 |
+
counter = 0
|
218 |
+
else:
|
219 |
+
counter += 1
|
220 |
+
if counter >= patience:
|
221 |
+
print(f'Early stopping at epoch {epoch_num+1}')
|
222 |
+
break
|
223 |
+
scheduler.step(val_loss)
|
224 |
+
|
225 |
+
plot_graphs(history, "accuracy")
|
226 |
+
plot_graphs(history, "loss")
|
227 |
+
EPOCHS = 15
|
228 |
+
model = BertClassifierConv1D()
|
229 |
+
LR = 1e-6
|
230 |
+
|
231 |
+
train(model, df_train, df_val, LR, EPOCHS)
|
232 |
+
|
233 |
+
!pip install datetime
|
234 |
+
|
235 |
+
now = datetime.now()
|
236 |
+
seed = int(now.strftime("%Y%m%d%H%M%S")) # daily
|
237 |
+
print(seed)
|
238 |
+
random.seed(seed)
|
239 |
+
random_time=random.randint(0, 350)
|
240 |
+
model_path= 'model_weights'+str(random_time)+".pth"
|
241 |
+
torch.save(model.state_dict(), model_path)
|
242 |
+
print(model_path)
|
243 |
+
|
244 |
+
def evaluate(model, test_data):
|
245 |
+
|
246 |
+
test = Dataset(test_data)
|
247 |
+
|
248 |
+
test_dataloader = torch.utils.data.DataLoader(test, batch_size=32)
|
249 |
+
|
250 |
+
use_cuda = torch.cuda.is_available()
|
251 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
252 |
+
|
253 |
+
if use_cuda:
|
254 |
+
|
255 |
+
model = model.cuda()
|
256 |
+
|
257 |
+
total_acc_test = 0
|
258 |
+
output_indices = []
|
259 |
+
test_labels=[]
|
260 |
+
with torch.no_grad():
|
261 |
+
|
262 |
+
for test_input, test_label in test_dataloader:
|
263 |
+
|
264 |
+
test_label = test_label.to(device)
|
265 |
+
mask = test_input['attention_mask'].to(device)
|
266 |
+
input_id = test_input['input_ids'].squeeze(1).to(device)
|
267 |
+
|
268 |
+
output = model(input_id, mask)
|
269 |
+
|
270 |
+
acc = (output.argmax(dim=1) == test_label).sum().item()
|
271 |
+
total_acc_test += acc
|
272 |
+
|
273 |
+
batch_indices = output.argmax(dim=1).tolist()
|
274 |
+
output_indices.extend(batch_indices)
|
275 |
+
test_labels.extend(test_label)
|
276 |
+
|
277 |
+
|
278 |
+
print(f'Test Accuracy: {total_acc_test / len(test_data): .3f}')
|
279 |
+
return output_indices, test_labels
|
280 |
+
y_pred,y_test=evaluate(model, df_test)
|
281 |
+
|
282 |
+
y_pred_tensor = torch.tensor(y_pred)
|
283 |
+
y_test_tensor = torch.tensor(y_test)
|
284 |
+
|
285 |
+
print(classification_report(np.array(y_pred_tensor.cpu()), np.array(y_test_tensor.cpu()), output_dict=True))
|
286 |
+
|
287 |
+
from sklearn.metrics import f1_score
|
288 |
+
f1_score(np.array(y_test_tensor.cpu()),np.array(y_pred_tensor.cpu()), average='macro')
|
289 |
+
|
290 |
+
def conf_matrix(y_test,y_pred):
|
291 |
+
cm = confusion_matrix(y_test,y_pred, normalize="true")
|
292 |
+
sns.heatmap(cm, annot=True, cmap="Blues",xticklabels=["INSULT","OTHER","PROFANITY","RACIST","SECIST"],yticklabels=["INSULT","OTHER","PROFANITY","RACIST","SECIST"] )
|
293 |
+
plt.xlabel('Tahmin Edilen Sınıf')
|
294 |
+
plt.ylabel('Gerçek Sınıf')
|
295 |
+
plt.show()
|
296 |
+
conf_matrix(np.array(y_pred_tensor.cpu()), np.array(y_test_tensor.cpu()))
|