File size: 1,936 Bytes
4cfa58e
 
 
 
 
 
 
f10d876
 
4cfa58e
ac3a3ae
4cfa58e
 
e75b5d4
4cfa58e
 
 
aaff2b3
 
 
4cfa58e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e75b5d4
4cfa58e
 
e75b5d4
4cfa58e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
datasets:
- fistro/gromenauer
language:
- es
pipeline_tag: text-generation
base_model:
- mistralai/Mistral-7B-v0.1
---
# Gromenauer-7B

<div align=center>
<img alt="gromenauer-7B logo" src="https://huggingface.co/bertin-project/Gromenauer-7B/resolve/main/images/gromenauer.png" width="200px">
</div>

## Overview
Gromenauer-7B is a Spanish language model designed to understand and generate high-quality Spanish text. Developed using the robust Mistral architecture, this model has been trained on an extensive literary corpus, ensuring it captures a wide range of linguistic nuances, styles, and contexts found in Spanish literature.

## Model Details

- **Model Type**: Mistral
- **Sequence Length**: 8192
- **Hidden Dimension**: 4096
- **Intermediate Dimension**: 14336
- **Number of Layers**: 32
- **Number of Attention Heads**: 32
- **Number of Key-Value Heads**: 8
- **Activation Function**: SiLU
- **Initializer Range**: 0.02
- **Layer Norm Epsilon**: 1.0e-05
- **Use Flash Attention**: Yes
- **Gradient Checkpointing**: Enabled (Block Size: 5)
- **Sliding Window Attention**: 4096
- **Use Bias**: No

## Training Details

- **Tokenizer**: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Batch Size**: 512
- **Learning Rate**: 1e-5
- **Optimizer**: Adam with beta1=0.9, beta2=0.95, epsilon=1e-8
- **Weight Decay**: 0.1
- **Warmup Steps**: 200
- **Learning Rate Schedule**: Cosine
- **Number of Training Steps**: 7000

## Usage

To load the model in your project, you can use the following code:

```python
from transformers import AutoModel, AutoTokenizer

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("bertin-project/Gromenauer-7B")

# Load the model
model = AutoModel.from_pretrained("bertin-project/Gromenauer-7B")

# Example usage
text = "Introduce aquí tu texto en español."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)