lytang commited on
Commit
a0449e9
·
verified ·
1 Parent(s): f9cdf36

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -17,7 +17,7 @@ The model is an improvement of the MiniCheck model proposed in the following pap
17
 
18
  The model takes as input a document and **a sentence** and determines whether the sentence is supported by the document: **MiniCheck-Model(document, claim) -> {0, 1}**
19
 
20
- **In order to fact-check a multi-sentence claim, the claim should first be broken up into sentences.** The document does not need to be chunked unless it exceeds `32K` tokens.
21
 
22
  `Llama-3.1-Bespoke-MiniCheck-7B` is finetuned from `internlm/internlm2_5-7b-chat` ([Cai et al., 2024](https://arxiv.org/pdf/2403.17297))
23
  on the combination of 35K data points only:
@@ -68,7 +68,7 @@ claim_2 = "The students are on vacation."
68
  # model_name can be one of:
69
  # ['roberta-large', 'deberta-v3-large', 'flan-t5-large', 'Bespoke-MiniCheck-7B']
70
  scorer = MiniCheck(model_name='Bespoke-MiniCheck-7B', enable_prefix_caching=False, cache_dir='./ckpts')
71
- pred_label, raw_prob, _, _ = scorer.score(docs=[doc, doc], claims=[claim_1, claim_2])
72
 
73
  print(pred_label) # [1, 0]
74
  print(raw_prob) # [0.9840446675150499, 0.010986349594852094]
 
17
 
18
  The model takes as input a document and **a sentence** and determines whether the sentence is supported by the document: **MiniCheck-Model(document, claim) -> {0, 1}**
19
 
20
+ **In order to fact-check a multi-sentence claim, the claim should first be broken up into sentences.** The document does not need to be chunked unless it exceeds `32K` tokens. Depending on use cases, adjusting chunk size may yield better performance.
21
 
22
  `Llama-3.1-Bespoke-MiniCheck-7B` is finetuned from `internlm/internlm2_5-7b-chat` ([Cai et al., 2024](https://arxiv.org/pdf/2403.17297))
23
  on the combination of 35K data points only:
 
68
  # model_name can be one of:
69
  # ['roberta-large', 'deberta-v3-large', 'flan-t5-large', 'Bespoke-MiniCheck-7B']
70
  scorer = MiniCheck(model_name='Bespoke-MiniCheck-7B', enable_prefix_caching=False, cache_dir='./ckpts')
71
+ pred_label, raw_prob, _, _ = scorer.score(docs=[doc, doc], claims=[claim_1, claim_2]) # can set `chunk_size=your-specified-value` here, default to 32K chunk size.
72
 
73
  print(pred_label) # [1, 0]
74
  print(raw_prob) # [0.9840446675150499, 0.010986349594852094]