bfuzzy1 commited on
Commit
efcece3
·
verified ·
1 Parent(s): a65683b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -12
README.md CHANGED
@@ -9,40 +9,39 @@ base_model: bfuzzy1/acheron-m
9
  widget:
10
  - messages:
11
  - role: user
12
- content: What is your favorite condiment?
13
  license: other
14
  datasets:
15
  - ai2-adapt-dev/gsm8k_math_ifeval_ground_truth_mixed
16
  ---
17
 
18
- # Model Trained Using AutoTrain
19
-
20
- This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
21
-
22
  # Usage
23
 
24
  ```python
25
 
26
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
27
 
28
- model_path = "PATH_TO_THIS_REPO"
29
 
30
  tokenizer = AutoTokenizer.from_pretrained(model_path)
31
  model = AutoModelForCausalLM.from_pretrained(
32
  model_path,
33
  device_map="auto",
34
- torch_dtype='auto'
35
- ).eval()
 
36
 
37
- # Prompt content: "hi"
38
  messages = [
39
- {"role": "user", "content": "hi"}
40
  ]
41
 
42
  input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
43
- output_ids = model.generate(input_ids.to('cuda'))
 
 
 
44
  response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
45
 
46
- # Model response: "Hello! How can I assist you today?"
47
  print(response)
48
  ```
 
9
  widget:
10
  - messages:
11
  - role: user
12
+ content: What is 2 + 2 - 3?
13
  license: other
14
  datasets:
15
  - ai2-adapt-dev/gsm8k_math_ifeval_ground_truth_mixed
16
  ---
17
 
 
 
 
 
18
  # Usage
19
 
20
  ```python
21
 
22
  from transformers import AutoModelForCausalLM, AutoTokenizer
23
+ import torch
24
 
25
+ model_path = "bfuzzy1/acheron-m1a-llama"
26
 
27
  tokenizer = AutoTokenizer.from_pretrained(model_path)
28
  model = AutoModelForCausalLM.from_pretrained(
29
  model_path,
30
  device_map="auto",
31
+ torch_dtype='auto',
32
+ trust_remote_code=True
33
+ )
34
 
 
35
  messages = [
36
+ {"role": "user", "content": "What's 2 + 2 -3?"}
37
  ]
38
 
39
  input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
40
+ output_ids = model.generate(
41
+ input_ids.to('mps' if torch.backends.mps.is_available() else 'cpu'),
42
+ max_new_tokens=100
43
+ )
44
  response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
45
 
 
46
  print(response)
47
  ```