File size: 17,932 Bytes
aaedd2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
---
base_model: microsoft/deberta-v3-base
datasets:
- bhujith10/multi_class_classification_dataset
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'Title: Detecting Adversarial Samples Using Density Ratio Estimates,
Abstract: Machine learning models, especially based on deep architectures are
used in
everyday applications ranging from self driving cars to medical diagnostics. It
has been shown that such models are dangerously susceptible to adversarial
samples, indistinguishable from real samples to human eye, adversarial samples
lead to incorrect classifications with high confidence. Impact of adversarial
samples is far-reaching and their efficient detection remains an open problem.
We propose to use direct density ratio estimation as an efficient model
agnostic measure to detect adversarial samples. Our proposed method works
equally well with single and multi-channel samples, and with different
adversarial sample generation methods. We also propose a method to use density
ratio estimates for generating adversarial samples with an added constraint of
preserving density ratio.'
- text: 'Title: Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells:
the effect of self-localization,
Abstract: We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se
diluted-magnetic-semiconductor quantum wells using time-resolved
photoluminescence (PL). The magnetic field and temperature dependencies of this
dynamics allow us to separate the non-magnetic and magnetic contributions to
the exciton localization. We deduce the EMP energy of 14 meV, which is in
agreement with time-integrated measurements based on selective excitation and
the magnetic field dependence of the PL circular polarization degree. The
polaron formation time of 500 ps is significantly longer than the corresponding
values reported earlier. We propose that this behavior is related to strong
self-localization of the EMP, accompanied with a squeezing of the heavy-hole
envelope wavefunction. This conclusion is also supported by the decrease of the
exciton lifetime from 600 ps to 200 - 400 ps with increasing magnetic field and
temperature.'
- text: 'Title: Exponential Sums and Riesz energies,
Abstract: We bound an exponential sum that appears in the study of irregularities
of
distribution (the low-frequency Fourier energy of the sum of several Dirac
measures) by geometric quantities: a special case is that for all $\left\{ x_1,
\dots, x_N\right\} \subset \mathbb{T}^2$, $X \geq 1$ and a universal $c>0$ $$
\sum_{i,j=1}^{N}{ \frac{X^2}{1 + X^4 \|x_i -x_j\|^4}} \lesssim \sum_{k \in
\mathbb{Z}^2 \atop \|k\| \leq X}{ \left| \sum_{n=1}^{N}{ e^{2 \pi i
\left\langle k, x_n \right\rangle}}\right|^2} \lesssim \sum_{i,j=1}^{N}{ X^2
e^{-c X^2\|x_i -x_j\|^2}}.$$ Since this exponential sum is intimately tied to
rather subtle distribution properties of the points, we obtain nonlocal
structural statements for near-minimizers of the Riesz-type energy. In the
regime $X \gtrsim N^{1/2}$ both upper and lower bound match for
maximally-separated point sets satisfying $\|x_i -x_j\| \gtrsim N^{-1/2}$.'
- text: 'Title: Influence of Spin Orbit Coupling in the Iron-Based Superconductors,
Abstract: We report on the influence of spin-orbit coupling (SOC) in the Fe-based
superconductors (FeSCs) via application of circularly-polarized spin and
angle-resolved photoemission spectroscopy. We combine this technique in
representative members of both the Fe-pnictides and Fe-chalcogenides with ab
initio density functional theory and tight-binding calculations to establish an
ubiquitous modification of the electronic structure in these materials imbued
by SOC. The influence of SOC is found to be concentrated on the hole pockets
where the superconducting gap is generally found to be largest. This result
contests descriptions of superconductivity in these materials in terms of pure
spin-singlet eigenstates, raising questions regarding the possible pairing
mechanisms and role of SOC therein.'
- text: 'Title: Zero-point spin-fluctuations of single adatoms,
Abstract: Stabilizing the magnetic signal of single adatoms is a crucial step
towards
their successful usage in widespread technological applications such as
high-density magnetic data storage devices. The quantum mechanical nature of
these tiny objects, however, introduces intrinsic zero-point spin-fluctuations
that tend to destabilize the local magnetic moment of interest by dwindling the
magnetic anisotropy potential barrier even at absolute zero temperature. Here,
we elucidate the origins and quantify the effect of the fundamental ingredients
determining the magnitude of the fluctuations, namely the ($i$) local magnetic
moment, ($ii$) spin-orbit coupling and ($iii$) electron-hole Stoner
excitations. Based on a systematic first-principles study of 3d and 4d adatoms,
we demonstrate that the transverse contribution of the fluctuations is
comparable in size to the magnetic moment itself, leading to a remarkable
$\gtrsim$50$\%$ reduction of the magnetic anisotropy energy. Our analysis gives
rise to a comprehensible diagram relating the fluctuation magnitude to
characteristic features of adatoms, providing practical guidelines for
designing magnetically stable nanomagnets with minimal quantum fluctuations.'
inference: false
---
# SetFit with microsoft/deberta-v3-base
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [bhujith10/multi_class_classification_dataset](https://huggingface.co/datasets/bhujith10/multi_class_classification_dataset) dataset that can be used for Text Classification. This SetFit model uses [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
- **Training Dataset:** [bhujith10/multi_class_classification_dataset](https://huggingface.co/datasets/bhujith10/multi_class_classification_dataset)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bhujith10/deberta-v3-base-setfit_finetuned")
# Run inference
preds = model("Title: Influence of Spin Orbit Coupling in the Iron-Based Superconductors,
Abstract: We report on the influence of spin-orbit coupling (SOC) in the Fe-based
superconductors (FeSCs) via application of circularly-polarized spin and
angle-resolved photoemission spectroscopy. We combine this technique in
representative members of both the Fe-pnictides and Fe-chalcogenides with ab
initio density functional theory and tight-binding calculations to establish an
ubiquitous modification of the electronic structure in these materials imbued
by SOC. The influence of SOC is found to be concentrated on the hole pockets
where the superconducting gap is generally found to be largest. This result
contests descriptions of superconductivity in these materials in terms of pure
spin-singlet eigenstates, raising questions regarding the possible pairing
mechanisms and role of SOC therein.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 23 | 148.1 | 303 |
### Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0002 | 1 | 0.4731 | - |
| 0.0078 | 50 | 0.4561 | - |
| 0.0155 | 100 | 0.4156 | - |
| 0.0233 | 150 | 0.2469 | - |
| 0.0311 | 200 | 0.2396 | - |
| 0.0388 | 250 | 0.2376 | - |
| 0.0466 | 300 | 0.2519 | - |
| 0.0543 | 350 | 0.1987 | - |
| 0.0621 | 400 | 0.1908 | - |
| 0.0699 | 450 | 0.161 | - |
| 0.0776 | 500 | 0.1532 | - |
| 0.0854 | 550 | 0.17 | - |
| 0.0932 | 600 | 0.139 | - |
| 0.1009 | 650 | 0.1406 | - |
| 0.1087 | 700 | 0.1239 | - |
| 0.1165 | 750 | 0.1332 | - |
| 0.1242 | 800 | 0.1566 | - |
| 0.1320 | 850 | 0.0932 | - |
| 0.1398 | 900 | 0.1101 | - |
| 0.1475 | 950 | 0.1153 | - |
| 0.1553 | 1000 | 0.0979 | - |
| 0.1630 | 1050 | 0.0741 | - |
| 0.1708 | 1100 | 0.0603 | - |
| 0.1786 | 1150 | 0.1027 | - |
| 0.1863 | 1200 | 0.0948 | - |
| 0.1941 | 1250 | 0.0968 | - |
| 0.2019 | 1300 | 0.085 | - |
| 0.2096 | 1350 | 0.0883 | - |
| 0.2174 | 1400 | 0.0792 | - |
| 0.2252 | 1450 | 0.1054 | - |
| 0.2329 | 1500 | 0.0556 | - |
| 0.2407 | 1550 | 0.0777 | - |
| 0.2484 | 1600 | 0.0922 | - |
| 0.2562 | 1650 | 0.076 | - |
| 0.2640 | 1700 | 0.0693 | - |
| 0.2717 | 1750 | 0.0857 | - |
| 0.2795 | 1800 | 0.0907 | - |
| 0.2873 | 1850 | 0.0621 | - |
| 0.2950 | 1900 | 0.0792 | - |
| 0.3028 | 1950 | 0.0608 | - |
| 0.3106 | 2000 | 0.052 | - |
| 0.3183 | 2050 | 0.056 | - |
| 0.3261 | 2100 | 0.0501 | - |
| 0.3339 | 2150 | 0.0559 | - |
| 0.3416 | 2200 | 0.0526 | - |
| 0.3494 | 2250 | 0.0546 | - |
| 0.3571 | 2300 | 0.0398 | - |
| 0.3649 | 2350 | 0.0527 | - |
| 0.3727 | 2400 | 0.0522 | - |
| 0.3804 | 2450 | 0.0468 | - |
| 0.3882 | 2500 | 0.0465 | - |
| 0.3960 | 2550 | 0.0393 | - |
| 0.4037 | 2600 | 0.0583 | - |
| 0.4115 | 2650 | 0.0278 | - |
| 0.4193 | 2700 | 0.0502 | - |
| 0.4270 | 2750 | 0.0413 | - |
| 0.4348 | 2800 | 0.0538 | - |
| 0.4425 | 2850 | 0.0361 | - |
| 0.4503 | 2900 | 0.0648 | - |
| 0.4581 | 2950 | 0.0459 | - |
| 0.4658 | 3000 | 0.0521 | - |
| 0.4736 | 3050 | 0.0288 | - |
| 0.4814 | 3100 | 0.0323 | - |
| 0.4891 | 3150 | 0.0335 | - |
| 0.4969 | 3200 | 0.0472 | - |
| 0.5047 | 3250 | 0.0553 | - |
| 0.5124 | 3300 | 0.0426 | - |
| 0.5202 | 3350 | 0.0276 | - |
| 0.5280 | 3400 | 0.0395 | - |
| 0.5357 | 3450 | 0.042 | - |
| 0.5435 | 3500 | 0.0343 | - |
| 0.5512 | 3550 | 0.0314 | - |
| 0.5590 | 3600 | 0.0266 | - |
| 0.5668 | 3650 | 0.0314 | - |
| 0.5745 | 3700 | 0.0379 | - |
| 0.5823 | 3750 | 0.0485 | - |
| 0.5901 | 3800 | 0.0311 | - |
| 0.5978 | 3850 | 0.0415 | - |
| 0.6056 | 3900 | 0.0266 | - |
| 0.6134 | 3950 | 0.0384 | - |
| 0.6211 | 4000 | 0.0348 | - |
| 0.6289 | 4050 | 0.0298 | - |
| 0.6366 | 4100 | 0.032 | - |
| 0.6444 | 4150 | 0.031 | - |
| 0.6522 | 4200 | 0.0367 | - |
| 0.6599 | 4250 | 0.0289 | - |
| 0.6677 | 4300 | 0.0333 | - |
| 0.6755 | 4350 | 0.0281 | - |
| 0.6832 | 4400 | 0.0307 | - |
| 0.6910 | 4450 | 0.0312 | - |
| 0.6988 | 4500 | 0.0488 | - |
| 0.7065 | 4550 | 0.03 | - |
| 0.7143 | 4600 | 0.0309 | - |
| 0.7220 | 4650 | 0.031 | - |
| 0.7298 | 4700 | 0.0268 | - |
| 0.7376 | 4750 | 0.0324 | - |
| 0.7453 | 4800 | 0.041 | - |
| 0.7531 | 4850 | 0.0349 | - |
| 0.7609 | 4900 | 0.0349 | - |
| 0.7686 | 4950 | 0.0291 | - |
| 0.7764 | 5000 | 0.025 | - |
| 0.7842 | 5050 | 0.0249 | - |
| 0.7919 | 5100 | 0.0272 | - |
| 0.7997 | 5150 | 0.0302 | - |
| 0.8075 | 5200 | 0.0414 | - |
| 0.8152 | 5250 | 0.0295 | - |
| 0.8230 | 5300 | 0.033 | - |
| 0.8307 | 5350 | 0.0203 | - |
| 0.8385 | 5400 | 0.0275 | - |
| 0.8463 | 5450 | 0.0354 | - |
| 0.8540 | 5500 | 0.0254 | - |
| 0.8618 | 5550 | 0.0313 | - |
| 0.8696 | 5600 | 0.0296 | - |
| 0.8773 | 5650 | 0.0248 | - |
| 0.8851 | 5700 | 0.036 | - |
| 0.8929 | 5750 | 0.025 | - |
| 0.9006 | 5800 | 0.0234 | - |
| 0.9084 | 5850 | 0.0221 | - |
| 0.9161 | 5900 | 0.0314 | - |
| 0.9239 | 5950 | 0.0273 | - |
| 0.9317 | 6000 | 0.0299 | - |
| 0.9394 | 6050 | 0.0262 | - |
| 0.9472 | 6100 | 0.0285 | - |
| 0.9550 | 6150 | 0.021 | - |
| 0.9627 | 6200 | 0.0215 | - |
| 0.9705 | 6250 | 0.0312 | - |
| 0.9783 | 6300 | 0.0259 | - |
| 0.9860 | 6350 | 0.0234 | - |
| 0.9938 | 6400 | 0.0222 | - |
| 1.0 | 6440 | - | 0.1609 |
### Framework Versions
- Python: 3.10.14
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |