File size: 17,932 Bytes
aaedd2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
---
base_model: microsoft/deberta-v3-base
datasets:
- bhujith10/multi_class_classification_dataset
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'Title: Detecting Adversarial Samples Using Density Ratio Estimates,

    Abstract: Machine learning models, especially based on deep architectures are
    used in

    everyday applications ranging from self driving cars to medical diagnostics. It

    has been shown that such models are dangerously susceptible to adversarial

    samples, indistinguishable from real samples to human eye, adversarial samples

    lead to incorrect classifications with high confidence. Impact of adversarial

    samples is far-reaching and their efficient detection remains an open problem.

    We propose to use direct density ratio estimation as an efficient model

    agnostic measure to detect adversarial samples. Our proposed method works

    equally well with single and multi-channel samples, and with different

    adversarial sample generation methods. We also propose a method to use density

    ratio estimates for generating adversarial samples with an added constraint of

    preserving density ratio.'
- text: 'Title: Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells:
    the effect of self-localization,

    Abstract: We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se

    diluted-magnetic-semiconductor quantum wells using time-resolved

    photoluminescence (PL). The magnetic field and temperature dependencies of this

    dynamics allow us to separate the non-magnetic and magnetic contributions to

    the exciton localization. We deduce the EMP energy of 14 meV, which is in

    agreement with time-integrated measurements based on selective excitation and

    the magnetic field dependence of the PL circular polarization degree. The

    polaron formation time of 500 ps is significantly longer than the corresponding

    values reported earlier. We propose that this behavior is related to strong

    self-localization of the EMP, accompanied with a squeezing of the heavy-hole

    envelope wavefunction. This conclusion is also supported by the decrease of the

    exciton lifetime from 600 ps to 200 - 400 ps with increasing magnetic field and

    temperature.'
- text: 'Title: Exponential Sums and Riesz energies,

    Abstract: We bound an exponential sum that appears in the study of irregularities
    of

    distribution (the low-frequency Fourier energy of the sum of several Dirac

    measures) by geometric quantities: a special case is that for all $\left\{ x_1,

    \dots, x_N\right\} \subset \mathbb{T}^2$, $X \geq 1$ and a universal $c>0$ $$

    \sum_{i,j=1}^{N}{ \frac{X^2}{1 + X^4 \|x_i -x_j\|^4}} \lesssim \sum_{k \in

    \mathbb{Z}^2 \atop \|k\| \leq X}{ \left| \sum_{n=1}^{N}{ e^{2 \pi i

    \left\langle k, x_n \right\rangle}}\right|^2} \lesssim \sum_{i,j=1}^{N}{ X^2

    e^{-c X^2\|x_i -x_j\|^2}}.$$ Since this exponential sum is intimately tied to

    rather subtle distribution properties of the points, we obtain nonlocal

    structural statements for near-minimizers of the Riesz-type energy. In the

    regime $X \gtrsim N^{1/2}$ both upper and lower bound match for

    maximally-separated point sets satisfying $\|x_i -x_j\| \gtrsim N^{-1/2}$.'
- text: 'Title: Influence of Spin Orbit Coupling in the Iron-Based Superconductors,

    Abstract: We report on the influence of spin-orbit coupling (SOC) in the Fe-based

    superconductors (FeSCs) via application of circularly-polarized spin and

    angle-resolved photoemission spectroscopy. We combine this technique in

    representative members of both the Fe-pnictides and Fe-chalcogenides with ab

    initio density functional theory and tight-binding calculations to establish an

    ubiquitous modification of the electronic structure in these materials imbued

    by SOC. The influence of SOC is found to be concentrated on the hole pockets

    where the superconducting gap is generally found to be largest. This result

    contests descriptions of superconductivity in these materials in terms of pure

    spin-singlet eigenstates, raising questions regarding the possible pairing

    mechanisms and role of SOC therein.'
- text: 'Title: Zero-point spin-fluctuations of single adatoms,

    Abstract: Stabilizing the magnetic signal of single adatoms is a crucial step
    towards

    their successful usage in widespread technological applications such as

    high-density magnetic data storage devices. The quantum mechanical nature of

    these tiny objects, however, introduces intrinsic zero-point spin-fluctuations

    that tend to destabilize the local magnetic moment of interest by dwindling the

    magnetic anisotropy potential barrier even at absolute zero temperature. Here,

    we elucidate the origins and quantify the effect of the fundamental ingredients

    determining the magnitude of the fluctuations, namely the ($i$) local magnetic

    moment, ($ii$) spin-orbit coupling and ($iii$) electron-hole Stoner

    excitations. Based on a systematic first-principles study of 3d and 4d adatoms,

    we demonstrate that the transverse contribution of the fluctuations is

    comparable in size to the magnetic moment itself, leading to a remarkable

    $\gtrsim$50$\%$ reduction of the magnetic anisotropy energy. Our analysis gives

    rise to a comprehensible diagram relating the fluctuation magnitude to

    characteristic features of adatoms, providing practical guidelines for

    designing magnetically stable nanomagnets with minimal quantum fluctuations.'
inference: false
---

# SetFit with microsoft/deberta-v3-base

This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [bhujith10/multi_class_classification_dataset](https://huggingface.co/datasets/bhujith10/multi_class_classification_dataset) dataset that can be used for Text Classification. This SetFit model uses [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base)
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
- **Training Dataset:** [bhujith10/multi_class_classification_dataset](https://huggingface.co/datasets/bhujith10/multi_class_classification_dataset)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("bhujith10/deberta-v3-base-setfit_finetuned")
# Run inference
preds = model("Title: Influence of Spin Orbit Coupling in the Iron-Based Superconductors,
Abstract: We report on the influence of spin-orbit coupling (SOC) in the Fe-based
superconductors (FeSCs) via application of circularly-polarized spin and
angle-resolved photoemission spectroscopy. We combine this technique in
representative members of both the Fe-pnictides and Fe-chalcogenides with ab
initio density functional theory and tight-binding calculations to establish an
ubiquitous modification of the electronic structure in these materials imbued
by SOC. The influence of SOC is found to be concentrated on the hole pockets
where the superconducting gap is generally found to be largest. This result
contests descriptions of superconductivity in these materials in terms of pure
spin-singlet eigenstates, raising questions regarding the possible pairing
mechanisms and role of SOC therein.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 23  | 148.1  | 303 |

### Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0002 | 1    | 0.4731        | -               |
| 0.0078 | 50   | 0.4561        | -               |
| 0.0155 | 100  | 0.4156        | -               |
| 0.0233 | 150  | 0.2469        | -               |
| 0.0311 | 200  | 0.2396        | -               |
| 0.0388 | 250  | 0.2376        | -               |
| 0.0466 | 300  | 0.2519        | -               |
| 0.0543 | 350  | 0.1987        | -               |
| 0.0621 | 400  | 0.1908        | -               |
| 0.0699 | 450  | 0.161         | -               |
| 0.0776 | 500  | 0.1532        | -               |
| 0.0854 | 550  | 0.17          | -               |
| 0.0932 | 600  | 0.139         | -               |
| 0.1009 | 650  | 0.1406        | -               |
| 0.1087 | 700  | 0.1239        | -               |
| 0.1165 | 750  | 0.1332        | -               |
| 0.1242 | 800  | 0.1566        | -               |
| 0.1320 | 850  | 0.0932        | -               |
| 0.1398 | 900  | 0.1101        | -               |
| 0.1475 | 950  | 0.1153        | -               |
| 0.1553 | 1000 | 0.0979        | -               |
| 0.1630 | 1050 | 0.0741        | -               |
| 0.1708 | 1100 | 0.0603        | -               |
| 0.1786 | 1150 | 0.1027        | -               |
| 0.1863 | 1200 | 0.0948        | -               |
| 0.1941 | 1250 | 0.0968        | -               |
| 0.2019 | 1300 | 0.085         | -               |
| 0.2096 | 1350 | 0.0883        | -               |
| 0.2174 | 1400 | 0.0792        | -               |
| 0.2252 | 1450 | 0.1054        | -               |
| 0.2329 | 1500 | 0.0556        | -               |
| 0.2407 | 1550 | 0.0777        | -               |
| 0.2484 | 1600 | 0.0922        | -               |
| 0.2562 | 1650 | 0.076         | -               |
| 0.2640 | 1700 | 0.0693        | -               |
| 0.2717 | 1750 | 0.0857        | -               |
| 0.2795 | 1800 | 0.0907        | -               |
| 0.2873 | 1850 | 0.0621        | -               |
| 0.2950 | 1900 | 0.0792        | -               |
| 0.3028 | 1950 | 0.0608        | -               |
| 0.3106 | 2000 | 0.052         | -               |
| 0.3183 | 2050 | 0.056         | -               |
| 0.3261 | 2100 | 0.0501        | -               |
| 0.3339 | 2150 | 0.0559        | -               |
| 0.3416 | 2200 | 0.0526        | -               |
| 0.3494 | 2250 | 0.0546        | -               |
| 0.3571 | 2300 | 0.0398        | -               |
| 0.3649 | 2350 | 0.0527        | -               |
| 0.3727 | 2400 | 0.0522        | -               |
| 0.3804 | 2450 | 0.0468        | -               |
| 0.3882 | 2500 | 0.0465        | -               |
| 0.3960 | 2550 | 0.0393        | -               |
| 0.4037 | 2600 | 0.0583        | -               |
| 0.4115 | 2650 | 0.0278        | -               |
| 0.4193 | 2700 | 0.0502        | -               |
| 0.4270 | 2750 | 0.0413        | -               |
| 0.4348 | 2800 | 0.0538        | -               |
| 0.4425 | 2850 | 0.0361        | -               |
| 0.4503 | 2900 | 0.0648        | -               |
| 0.4581 | 2950 | 0.0459        | -               |
| 0.4658 | 3000 | 0.0521        | -               |
| 0.4736 | 3050 | 0.0288        | -               |
| 0.4814 | 3100 | 0.0323        | -               |
| 0.4891 | 3150 | 0.0335        | -               |
| 0.4969 | 3200 | 0.0472        | -               |
| 0.5047 | 3250 | 0.0553        | -               |
| 0.5124 | 3300 | 0.0426        | -               |
| 0.5202 | 3350 | 0.0276        | -               |
| 0.5280 | 3400 | 0.0395        | -               |
| 0.5357 | 3450 | 0.042         | -               |
| 0.5435 | 3500 | 0.0343        | -               |
| 0.5512 | 3550 | 0.0314        | -               |
| 0.5590 | 3600 | 0.0266        | -               |
| 0.5668 | 3650 | 0.0314        | -               |
| 0.5745 | 3700 | 0.0379        | -               |
| 0.5823 | 3750 | 0.0485        | -               |
| 0.5901 | 3800 | 0.0311        | -               |
| 0.5978 | 3850 | 0.0415        | -               |
| 0.6056 | 3900 | 0.0266        | -               |
| 0.6134 | 3950 | 0.0384        | -               |
| 0.6211 | 4000 | 0.0348        | -               |
| 0.6289 | 4050 | 0.0298        | -               |
| 0.6366 | 4100 | 0.032         | -               |
| 0.6444 | 4150 | 0.031         | -               |
| 0.6522 | 4200 | 0.0367        | -               |
| 0.6599 | 4250 | 0.0289        | -               |
| 0.6677 | 4300 | 0.0333        | -               |
| 0.6755 | 4350 | 0.0281        | -               |
| 0.6832 | 4400 | 0.0307        | -               |
| 0.6910 | 4450 | 0.0312        | -               |
| 0.6988 | 4500 | 0.0488        | -               |
| 0.7065 | 4550 | 0.03          | -               |
| 0.7143 | 4600 | 0.0309        | -               |
| 0.7220 | 4650 | 0.031         | -               |
| 0.7298 | 4700 | 0.0268        | -               |
| 0.7376 | 4750 | 0.0324        | -               |
| 0.7453 | 4800 | 0.041         | -               |
| 0.7531 | 4850 | 0.0349        | -               |
| 0.7609 | 4900 | 0.0349        | -               |
| 0.7686 | 4950 | 0.0291        | -               |
| 0.7764 | 5000 | 0.025         | -               |
| 0.7842 | 5050 | 0.0249        | -               |
| 0.7919 | 5100 | 0.0272        | -               |
| 0.7997 | 5150 | 0.0302        | -               |
| 0.8075 | 5200 | 0.0414        | -               |
| 0.8152 | 5250 | 0.0295        | -               |
| 0.8230 | 5300 | 0.033         | -               |
| 0.8307 | 5350 | 0.0203        | -               |
| 0.8385 | 5400 | 0.0275        | -               |
| 0.8463 | 5450 | 0.0354        | -               |
| 0.8540 | 5500 | 0.0254        | -               |
| 0.8618 | 5550 | 0.0313        | -               |
| 0.8696 | 5600 | 0.0296        | -               |
| 0.8773 | 5650 | 0.0248        | -               |
| 0.8851 | 5700 | 0.036         | -               |
| 0.8929 | 5750 | 0.025         | -               |
| 0.9006 | 5800 | 0.0234        | -               |
| 0.9084 | 5850 | 0.0221        | -               |
| 0.9161 | 5900 | 0.0314        | -               |
| 0.9239 | 5950 | 0.0273        | -               |
| 0.9317 | 6000 | 0.0299        | -               |
| 0.9394 | 6050 | 0.0262        | -               |
| 0.9472 | 6100 | 0.0285        | -               |
| 0.9550 | 6150 | 0.021         | -               |
| 0.9627 | 6200 | 0.0215        | -               |
| 0.9705 | 6250 | 0.0312        | -               |
| 0.9783 | 6300 | 0.0259        | -               |
| 0.9860 | 6350 | 0.0234        | -               |
| 0.9938 | 6400 | 0.0222        | -               |
| 1.0    | 6440 | -             | 0.1609          |

### Framework Versions
- Python: 3.10.14
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->