Text Generation
Transformers
PyTorch
Safetensors
code
Eval Results
Inference Endpoints
File size: 8,345 Bytes
14e6c10
 
 
 
9a79e27
 
14e6c10
 
 
 
26c238e
14e6c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8bb92f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c3af99
b8bb92f
 
 
 
 
 
 
 
 
2c3af99
b8bb92f
 
 
6e8b1b3
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
 
 
 
 
2c3af99
b8bb92f
 
 
2c3af99
b8bb92f
14e6c10
 
 
 
5181078
14e6c10
5181078
 
 
 
14e6c10
5181078
14e6c10
c841a1f
14e6c10
1a7b0dd
28b6d6b
14e6c10
9ba0a0b
 
 
 
7066072
9ba0a0b
 
 
 
7066072
9ba0a0b
 
 
 
7066072
9ba0a0b
 
 
 
7066072
9ba0a0b
 
 
08466d2
7066072
9ba0a0b
 
 
14e6c10
ea2b405
5181078
14e6c10
5181078
14e6c10
0f863c6
14e6c10
 
 
5181078
14e6c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1278b8
 
14e6c10
 
 
 
 
 
 
 
e1278b8
 
14e6c10
 
 
739b4fc
14e6c10
 
 
 
bf6bf0d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'Question: Please write a function in Python that performs bubble sort.\n\nAnswer:'
  example_title: Bubble sort
  group: Python
license: bigcode-openrail-m
datasets:
- bigcode/commitpackft
- bigcode/oasst-octopack
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: OctoCoder
  results:
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Python
    metrics:
    - name: pass@1
      type: pass@1
      value: 46.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize JavaScript
    metrics:
    - name: pass@1
      type: pass@1
      value: 39.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Java
    metrics:
    - name: pass@1
      type: pass@1
      value: 38.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Go
    metrics:
    - name: pass@1
      type: pass@1
      value: 30.4
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize C++
    metrics:
    - name: pass@1
      type: pass@1
      value: 35.6
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Rust
    metrics:
    - name: pass@1
      type: pass@1
      value: 23.4
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Average
    metrics:
    - name: pass@1
      type: pass@1
      value: 35.5
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFix Python
    metrics:
    - name: pass@1
      type: pass@1
      value: 30.4
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFix JavaScript
    metrics:
    - name: pass@1
      type: pass@1
      value: 28.4
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFix Java
    metrics:
    - name: pass@1
      type: pass@1
      value: 30.6
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFix Go
    metrics:
    - name: pass@1
      type: pass@1
      value: 30.2
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFix C++
    metrics:
    - name: pass@1
      type: pass@1
      value: 26.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFix Rust
    metrics:
    - name: pass@1
      type: pass@1
      value: 16.5
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFix Average
    metrics:
    - name: pass@1
      type: pass@1
      value: 27.0
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Python
    metrics:
    - name: pass@1
      type: pass@1
      value: 35.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain JavaScript
    metrics:
    - name: pass@1
      type: pass@1
      value: 24.5
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Java
    metrics:
    - name: pass@1
      type: pass@1
      value: 27.3
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Go
    metrics:
    - name: pass@1
      type: pass@1
      value: 21.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain C++
    metrics:
    - name: pass@1
      type: pass@1
      value: 24.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Rust
    metrics:
    - name: pass@1
      type: pass@1
      value: 14.8
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Average
    metrics:
    - name: pass@1
      type: pass@1
      value: 24.5
      verified: false
---

![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true)

# Table of Contents

1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Training](#training)
4. [Citation](#citation)

# Model Summary

> OctoCoder is an instruction tuned model with 15.5B parameters created by finetuning StarCoder on CommitPackFT & OASST as described in the OctoPack paper.

- **Repository:** [bigcode-project/octopack](https://github.com/bigcode-project/octopack)
- **Paper:** [OctoPack: Instruction Tuning Code Large Language Models](https://arxiv.org/abs/2308.07124)
- **Languages:** 80+ Programming languages
- **OctoPack🐙🎒:**
<table>
<tr>
<th>Data</t> 
<th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></th>
<td>4TB of GitHub commits across 350 programming languages</td>
</tr>
<tr>
<th></t> 
<th><a href=https://huggingface.co/datasets/bigcode/commitpackft>CommitPackFT</a></th>
<td>Filtered version of CommitPack for high-quality commit messages that resemble instructions</td>
</tr>
<tr>
<th>Model</t> 
<th><a href=https://huggingface.co/bigcode/octocoder>OctoCoder</a></th>
<td>StarCoder (16B parameters) instruction tuned on CommitPackFT + OASST</td>
</tr>
<tr>
<th></t> 
<th><a href=https://huggingface.co/bigcode/octogeex>OctoGeeX</a></th>
<td>CodeGeeX2 (6B parameters) instruction tuned on CommitPackFT + OASST</td>
</tr>
<tr>
<th>Evaluation&nbsp;&nbsp;</t> 
<th><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></th>
<td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td>
</tr>
</table>


# Use

## Intended use

The model follows instructions provided in the input. You should always preface your input with "Question: " and finish it with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort.\n\nAnswer:"

**Feel free to share your generations in the Community tab!**

## Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigcode/octocoder"
device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)

inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort.\n\nAnswer:", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```

# Training

## Model

- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Steps:** 250k pretraining & 30 instruction tuning
- **Pretraining tokens:** 1 trillion pretraining & 2M instruction tuning
- **Precision:** bfloat16

## Hardware

- **Pretraining:**
  - **GPUs:** 512 Tesla A100
  - **Training time:** 24 days
- **Instruction tuning:**
  - **GPUs:** 8 Tesla A100
  - **Training time:** 4 hours

## Software

- **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/octopack#training)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)

# Citation

```bibtex
@article{muennighoff2023octopack,
      title={OctoPack: Instruction Tuning Code Large Language Models}, 
      author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre},
      journal={arXiv preprint arXiv:2308.07124},
      year={2023}
}
```