File size: 7,873 Bytes
14e6c10 9a79e27 14e6c10 26c238e 14e6c10 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 6e8b1b3 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 2c3af99 b8bb92f 14e6c10 5181078 14e6c10 5181078 14e6c10 5181078 14e6c10 b9c92c5 14e6c10 9ba0a0b 7066072 9ba0a0b 7066072 9ba0a0b 7066072 9ba0a0b 7066072 9ba0a0b 08466d2 7066072 9ba0a0b 14e6c10 ea2b405 5181078 14e6c10 5181078 14e6c10 5181078 14e6c10 e1278b8 14e6c10 e1278b8 14e6c10 739b4fc 14e6c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'Question: Please write a function in Python that performs bubble sort.\n\nAnswer:'
example_title: Bubble sort
group: Python
license: bigcode-openrail-m
datasets:
- bigcode/commitpackft
- bigcode/oasst-octopack
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: OctoCoder
results:
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Python
metrics:
- name: pass@1
type: pass@1
value: 46.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize JavaScript
metrics:
- name: pass@1
type: pass@1
value: 39.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Java
metrics:
- name: pass@1
type: pass@1
value: 38.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Go
metrics:
- name: pass@1
type: pass@1
value: 30.4
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize C++
metrics:
- name: pass@1
type: pass@1
value: 35.6
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Rust
metrics:
- name: pass@1
type: pass@1
value: 23.4
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalSynthesize Average
metrics:
- name: pass@1
type: pass@1
value: 35.5
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Python
metrics:
- name: pass@1
type: pass@1
value: 30.4
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix JavaScript
metrics:
- name: pass@1
type: pass@1
value: 28.4
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Java
metrics:
- name: pass@1
type: pass@1
value: 30.6
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Go
metrics:
- name: pass@1
type: pass@1
value: 30.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix C++
metrics:
- name: pass@1
type: pass@1
value: 26.1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Rust
metrics:
- name: pass@1
type: pass@1
value: 16.5
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Average
metrics:
- name: pass@1
type: pass@1
value: 27.0
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Python
metrics:
- name: pass@1
type: pass@1
value: 35.1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain JavaScript
metrics:
- name: pass@1
type: pass@1
value: 24.5
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Java
metrics:
- name: pass@1
type: pass@1
value: 27.3
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Go
metrics:
- name: pass@1
type: pass@1
value: 21.1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain C++
metrics:
- name: pass@1
type: pass@1
value: 24.1
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Rust
metrics:
- name: pass@1
type: pass@1
value: 14.8
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalExplain Average
metrics:
- name: pass@1
type: pass@1
value: 24.5
verified: false
---
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true)
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Training](#training)
4. [Citation](#citation)
# Model Summary
OctoCoder is an instruction tuned model with 15.5B parameters created by finetuning StarCoder on CommitPackFT & OASST as described in the OctoPack paper.
- **Repository:** [bigcode/octopack](https://github.com/bigcode-project/octopack)
- **Paper:** [TODO]()
- **Languages:** 80+ Programming languages
- **OctoPack🐙🎒:**
<table>
<tr>
<th>Data</t>
<th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></th>
<td>4TB of GitHub commits across 350 programming languages</td>
</tr>
<tr>
<th></t>
<th><a href=https://huggingface.co/datasets/bigcode/commitpackft>CommitPackFT</a></th>
<td>Filtered version of CommitPack for high-quality commit messages that resemble instructions</td>
</tr>
<tr>
<th>Model</t>
<th><a href=https://huggingface.co/bigcode/octocoder>OctoCoder</a></th>
<td>StarCoder (16B parameters) instruction tuned on CommitPackFT + OASST</td>
</tr>
<tr>
<th></t>
<th><a href=https://huggingface.co/bigcode/octogeex>OctoGeeX</a></th>
<td>CodeGeeX2 (6B parameters) instruction tuned on CommitPackFT + OASST</td>
</tr>
<tr>
<th>Evaluation </t>
<th><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></th>
<td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td>
</tr>
</table>
# Use
## Intended use
The model follows instructions provided in the input. We recommend prefacing your input with "Question: " and finishing with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort.\n\nAnswer:"
**Feel free to share your generations in the Community tab!**
## Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/octocoder"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort.\n\nAnswer:", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Steps:** 250k pretraining & 30 instruction tuning
- **Pretraining tokens:** 1 trillion pretraining & 2M instruction tuning
- **Precision:** bfloat16
## Hardware
- **Pretraining:**
- **GPUs:** 512 Tesla A100
- **Training time:** 24 days
- **Instruction tuning:**
- **GPUs:** 8 Tesla A100
- **Training time:** 4 hours
## Software
- **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/octopack#training)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
# Citation
TODO |