davanstrien HF staff commited on
Commit
eb3febd
·
1 Parent(s): 1265348

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -14
README.md CHANGED
@@ -32,22 +32,14 @@ library_name: transformers
32
 
33
  ## Usage
34
 
35
- You can use cURL to access this model:
 
36
 
37
- ```
38
- $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-testblog-64771135885
39
- ```
40
-
41
- Or Python API:
42
 
43
  ```
44
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
45
-
46
- model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-testblog-64771135885", use_auth_token=True)
47
-
48
- tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-testblog-64771135885", use_auth_token=True)
49
-
50
- inputs = tokenizer("I love AutoTrain", return_tensors="pt")
51
 
52
- outputs = model(**inputs)
 
 
53
  ```
 
32
 
33
  ## Usage
34
 
35
+ The easiest way to use this model locally is via the [Transformers](https://huggingface.co/docs/transformers/index) library [pipelines for inference](https://huggingface.co/docs/transformers/pipeline_tutorial).
36
+ Once you have [installed transformers](https://huggingface.co/docs/transformers/installation) you can run the following code. This will download and cache the model locally and allow you to make predictions on text input.
37
 
 
 
 
 
 
38
 
39
  ```
40
+ >>>from transformers import pipeline
 
 
 
 
 
 
41
 
42
+ >>>classifier = pipeline('text-classification', "davanstrien/autotrain-beyond-the-books")
43
+ >>>classifier(text)
44
+ [{'label': 'no_jim_crow', 'score': 0.9718555212020874}]
45
  ```