File size: 18,598 Bytes
1d697a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
---
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B
tags:
- generated_from_trainer
datasets:
- cognitivecomputations/Dolphin-2.9
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- mlabonne/FineTome-100k
- arcee/agent_data
- PawanKrd/math-gpt-4o-200k
- cognitivecomputations/SystemChat-2.0
---
# BigStorm - ExLLamaV2 (Exl2) Quantization
- 6.0 bpw target
- 8 head bits

Enjoy! Raise an issue if you'd like other BPW levels.
**Base Model Card Follows:**
---

# Dolphin 2.9.4 Llama 3.1 8b 🐬

Curated and trained by Eric Hartford and Cognitive Computations

[![Discord](https://img.shields.io/discord/1156064224225808488?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FtCMkMDDHwm)](https://discord.gg/h3K4XGj2RH)
Discord: https://discord.gg/h3K4XGj2RH

<img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/ldkN1J0WIDQwU4vutGYiD.png" width="600" />

Our appreciation for the sponsors of Dolphin 2.9.4:
- [Crusoe Cloud](https://crusoe.ai/) - provided excellent on-demand 8xL40S node

This model is based on Meta Llama 3.1 8b, and is governed by the Llama 3.1 license.

The base model has 128K context, and our finetuning used 8192 sequence length.

Dolphin 2.9.4 uses ChatML prompt template format.

example:

```
<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```

Dolphin-2.9.4 has a variety of instruction following, conversational, and coding skills. It also has agentic abilities and supports function calling.
It is especially trained to obey the system prompt, and follow instructions in many languages.

Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.


<details><summary>Evals</summary>

```
hf (pretrained=/workspace/axolotl/dolphin-2.9.4-llama3.1-8b-hf,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto (4)
|                           Tasks                           |Version|Filter|n-shot|        Metric         |   |Value |   |Stderr|
|-----------------------------------------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard                                                |N/A    |none  |     0|acc                    |↑  |0.2926|±  |0.0041|
|                                                           |       |none  |     0|acc_norm               |↑  |0.4513|±  |0.0053|
|                                                           |       |none  |     0|exact_match            |↑  |0.0982|±  |0.0079|
|                                                           |       |none  |     0|inst_level_loose_acc   |↑  |0.3825|±  |N/A   |
|                                                           |       |none  |     0|inst_level_strict_acc  |↑  |0.3597|±  |N/A   |
|                                                           |       |none  |     0|prompt_level_loose_acc |↑  |0.2421|±  |0.0184|
|                                                           |       |none  |     0|prompt_level_strict_acc|↑  |0.2181|±  |0.0178|
| - leaderboard_bbh                                         |N/A    |none  |     3|acc_norm               |↑  |0.4931|±  |0.0061|
|  - leaderboard_bbh_boolean_expressions                    |      0|none  |     3|acc_norm               |↑  |0.8000|±  |0.0253|
|  - leaderboard_bbh_causal_judgement                       |      0|none  |     3|acc_norm               |↑  |0.5615|±  |0.0364|
|  - leaderboard_bbh_date_understanding                     |      0|none  |     3|acc_norm               |↑  |0.4520|±  |0.0315|
|  - leaderboard_bbh_disambiguation_qa                      |      0|none  |     3|acc_norm               |↑  |0.6640|±  |0.0299|
|  - leaderboard_bbh_formal_fallacies                       |      0|none  |     3|acc_norm               |↑  |0.5600|±  |0.0315|
|  - leaderboard_bbh_geometric_shapes                       |      0|none  |     3|acc_norm               |↑  |0.3640|±  |0.0305|
|  - leaderboard_bbh_hyperbaton                             |      0|none  |     3|acc_norm               |↑  |0.6320|±  |0.0306|
|  - leaderboard_bbh_logical_deduction_five_objects         |      0|none  |     3|acc_norm               |↑  |0.4600|±  |0.0316|
|  - leaderboard_bbh_logical_deduction_seven_objects        |      0|none  |     3|acc_norm               |↑  |0.4360|±  |0.0314|
|  - leaderboard_bbh_logical_deduction_three_objects        |      0|none  |     3|acc_norm               |↑  |0.6160|±  |0.0308|
|  - leaderboard_bbh_movie_recommendation                   |      0|none  |     3|acc_norm               |↑  |0.7880|±  |0.0259|
|  - leaderboard_bbh_navigate                               |      0|none  |     3|acc_norm               |↑  |0.5200|±  |0.0317|
|  - leaderboard_bbh_object_counting                        |      0|none  |     3|acc_norm               |↑  |0.4520|±  |0.0315|
|  - leaderboard_bbh_penguins_in_a_table                    |      0|none  |     3|acc_norm               |↑  |0.5205|±  |0.0415|
|  - leaderboard_bbh_reasoning_about_colored_objects        |      0|none  |     3|acc_norm               |↑  |0.5120|±  |0.0317|
|  - leaderboard_bbh_ruin_names                             |      0|none  |     3|acc_norm               |↑  |0.6320|±  |0.0306|
|  - leaderboard_bbh_salient_translation_error_detection    |      0|none  |     3|acc_norm               |↑  |0.4320|±  |0.0314|
|  - leaderboard_bbh_snarks                                 |      0|none  |     3|acc_norm               |↑  |0.5843|±  |0.0370|
|  - leaderboard_bbh_sports_understanding                   |      0|none  |     3|acc_norm               |↑  |0.7040|±  |0.0289|
|  - leaderboard_bbh_temporal_sequences                     |      0|none  |     3|acc_norm               |↑  |0.1440|±  |0.0222|
|  - leaderboard_bbh_tracking_shuffled_objects_five_objects |      0|none  |     3|acc_norm               |↑  |0.1560|±  |0.0230|
|  - leaderboard_bbh_tracking_shuffled_objects_seven_objects|      0|none  |     3|acc_norm               |↑  |0.1320|±  |0.0215|
|  - leaderboard_bbh_tracking_shuffled_objects_three_objects|      0|none  |     3|acc_norm               |↑  |0.2840|±  |0.0286|
|  - leaderboard_bbh_web_of_lies                            |      0|none  |     3|acc_norm               |↑  |0.4840|±  |0.0317|
| - leaderboard_gpqa                                        |N/A    |none  |     0|acc_norm               |↑  |0.2903|±  |0.0132|
|  - leaderboard_gpqa_diamond                               |      1|none  |     0|acc_norm               |↑  |0.2980|±  |0.0326|
|  - leaderboard_gpqa_extended                              |      1|none  |     0|acc_norm               |↑  |0.2839|±  |0.0193|
|  - leaderboard_gpqa_main                                  |      1|none  |     0|acc_norm               |↑  |0.2946|±  |0.0216|
| - leaderboard_ifeval                                      |      2|none  |     0|inst_level_loose_acc   |↑  |0.3825|±  |N/A   |
|                                                           |       |none  |     0|inst_level_strict_acc  |↑  |0.3597|±  |N/A   |
|                                                           |       |none  |     0|prompt_level_loose_acc |↑  |0.2421|±  |0.0184|
|                                                           |       |none  |     0|prompt_level_strict_acc|↑  |0.2181|±  |0.0178|
|  - leaderboard_math_algebra_hard                          |      1|none  |     4|exact_match            |↑  |0.1596|±  |0.0209|
|  - leaderboard_math_counting_and_prob_hard                |      1|none  |     4|exact_match            |↑  |0.0488|±  |0.0195|
|  - leaderboard_math_geometry_hard                         |      1|none  |     4|exact_match            |↑  |0.0530|±  |0.0196|
| - leaderboard_math_hard                                   |N/A    |none  |     4|exact_match            |↑  |0.0982|±  |0.0079|
|  - leaderboard_math_intermediate_algebra_hard             |      1|none  |     4|exact_match            |↑  |0.0143|±  |0.0071|
|  - leaderboard_math_num_theory_hard                       |      1|none  |     4|exact_match            |↑  |0.0455|±  |0.0168|
|  - leaderboard_math_prealgebra_hard                       |      1|none  |     4|exact_match            |↑  |0.2591|±  |0.0316|
|  - leaderboard_math_precalculus_hard                      |      1|none  |     4|exact_match            |↑  |0.0519|±  |0.0192|
| - leaderboard_mmlu_pro                                    |    0.1|none  |     5|acc                    |↑  |0.2926|±  |0.0041|
| - leaderboard_musr                                        |N/A    |none  |     0|acc_norm               |↑  |0.3862|±  |0.0173|
|  - leaderboard_musr_murder_mysteries                      |      1|none  |     0|acc_norm               |↑  |0.5280|±  |0.0316|
|  - leaderboard_musr_object_placements                     |      1|none  |     0|acc_norm               |↑  |0.3594|±  |0.0300|
|  - leaderboard_musr_team_allocation                       |      1|none  |     0|acc_norm               |↑  |0.2720|±  |0.0282|

|         Groups         |Version|Filter|n-shot|        Metric         |   |Value |   |Stderr|
|------------------------|-------|------|-----:|-----------------------|---|-----:|---|------|
|leaderboard             |N/A    |none  |     0|acc                    |↑  |0.2926|±  |0.0041|
|                        |       |none  |     0|acc_norm               |↑  |0.4513|±  |0.0053|
|                        |       |none  |     0|exact_match            |↑  |0.0982|±  |0.0079|
|                        |       |none  |     0|inst_level_loose_acc   |↑  |0.3825|±  |N/A   |
|                        |       |none  |     0|inst_level_strict_acc  |↑  |0.3597|±  |N/A   |
|                        |       |none  |     0|prompt_level_loose_acc |↑  |0.2421|±  |0.0184|
|                        |       |none  |     0|prompt_level_strict_acc|↑  |0.2181|±  |0.0178|
| - leaderboard_bbh      |N/A    |none  |     3|acc_norm               |↑  |0.4931|±  |0.0061|
| - leaderboard_gpqa     |N/A    |none  |     0|acc_norm               |↑  |0.2903|±  |0.0132|
| - leaderboard_math_hard|N/A    |none  |     4|exact_match            |↑  |0.0982|±  |0.0079|
| - leaderboard_musr     |N/A    |none  |     0|acc_norm               |↑  |0.3862|±  |0.0173|
```

</details>

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3.1-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
# load_in_4bit: true
strict: false

datasets:
  - path: /workspace/datasets/dolphin-2.9.4/dolphin201-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml

chat_template: chatml
# adapter: qlora
# lora_r: 128
# lora_alpha: 16
# lora_modules_to_save: [embed_tokens, lm_head]
# lora_dropout: 0.05
# lora_target_linear: true

unfrozen_parameters:
- input_layernorm
- model.norm
- post_attention_layernorm
- self_attn.rotary_emb
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.1.mlp.down_proj
- model.layers.0.mlp.down_proj
- model.layers.30.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.21.mlp.down_proj
- model.layers.22.mlp.down_proj
- model.layers.29.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.23.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.17.mlp.down_proj
- model.layers.6.mlp.down_proj
- model.layers.31.mlp.down_proj
# mlp.up_proj layers
- model.layers.4.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.0.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.1.mlp.up_proj
- model.layers.8.mlp.up_proj
- model.layers.12.mlp.up_proj
- model.layers.14.mlp.up_proj
- model.layers.9.mlp.up_proj
- model.layers.15.mlp.up_proj
- model.layers.17.mlp.up_proj
- model.layers.13.mlp.up_proj
- model.layers.19.mlp.up_proj
# self_attn.k_proj layers
- model.layers.29.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.17.self_attn.k_proj
- model.layers.11.self_attn.k_proj
- model.layers.18.self_attn.k_proj
- model.layers.14.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.14.self_attn.o_proj
- model.layers.7.self_attn.o_proj
- model.layers.5.self_attn.o_proj
- model.layers.11.self_attn.o_proj
- model.layers.6.self_attn.o_proj
- model.layers.24.self_attn.o_proj
- model.layers.9.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.12.self_attn.o_proj
- model.layers.8.self_attn.o_proj
- model.layers.25.self_attn.o_proj
- model.layers.21.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.16.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.8.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.14.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.0.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.1.self_attn.q_proj
- model.layers.6.self_attn.q_proj
- model.layers.5.self_attn.q_proj
- model.layers.7.self_attn.q_proj
- model.layers.12.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.26.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.26.self_attn.v_proj
- model.layers.17.self_attn.v_proj
- model.layers.3.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.21.self_attn.v_proj
- model.layers.15.self_attn.v_proj
- model.layers.16.self_attn.v_proj
- model.layers.20.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.6.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.4.self_attn.v_proj
- model.layers.1.self_attn.v_proj
- model.layers.22.self_attn.v_proj
- model.layers.14.self_attn.v_proj
# mlp.gate_proj layers
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.0.mlp.gate_proj
- model.layers.25.mlp.gate_proj
- model.layers.26.mlp.gate_proj
- model.layers.5.mlp.gate_proj
- model.layers.24.mlp.gate_proj
- model.layers.28.mlp.gate_proj
- model.layers.23.mlp.gate_proj
- model.layers.27.mlp.gate_proj
- model.layers.21.mlp.gate_proj
- model.layers.22.mlp.gate_proj
- model.layers.29.mlp.gate_proj
- model.layers.20.mlp.gate_proj




dataset_prepared_path:  /workspace/axolotl/dolph-2.9.4-nemo-prepared
val_set_size: 0.01
output_dir: /workspace/axolotl/dolphin-2.9.4-llama3.1-8b

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: dolphin-2.9.4-llama3.1-8b
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32:

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
# evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
save_total_limit: 2
save_steps:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
special_tokens:
  eos_token: "<|im_end|>"
  bos_token: "<|begin_of_text|>"
  pad_token: "<|finetune_right_pad_id|>"
tokens:
  - "<|im_start|>"


# fsdp:
#   - full_shard
#   - auto_wrap
# fsdp_config:
#   fsdp_limit_all_gathers: true
#   fsdp_sync_module_states: true
#   fsdp_offload_params: true
#   fsdp_use_orig_params: false
#   fsdp_cpu_ram_efficient_loading: true
#   fsdp_transformer_layer_cls_to_wrap: MixtralSparseMoeBlock
#   fsdp_state_dict_type: FULL_STATE_DICT
#   fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#   fsdp_sharding_strategy: FULL_SHARD
#   fsdp_forward_prefetch: false
#   fsdp_backward_prefetch: BACKWARD_PRE
```

</details><br>

# workspace/axolotl/dolphin-2.9.4-llama3.1-8b

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5655

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5837        | 1.0180 | 1161 | 0.5814          |
| 0.5525        | 2.0179 | 2322 | 0.5671          |
| 0.5514        | 2.9624 | 3420 | 0.5655          |


### Framework versions

- Transformers 4.44.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1