File size: 4,317 Bytes
728d9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: pii-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pii-ner
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5816
- Precision: 0.3789
- Recall: 0.2054
- F1: 0.2664
- Accuracy: 0.9580
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.3048 | 1.0 | 14 | 0.7370 | 0.0088 | 0.0438 | 0.0147 | 0.7632 |
| 0.7328 | 2.0 | 28 | 0.2553 | 0.0 | 0.0 | 0.0 | 0.9350 |
| 0.2676 | 3.0 | 42 | 0.2095 | 0.7353 | 0.1684 | 0.2740 | 0.9658 |
| 0.0976 | 4.0 | 56 | 0.2309 | 0.9091 | 0.2020 | 0.3306 | 0.9683 |
| 0.0664 | 5.0 | 70 | 0.2471 | 0.9242 | 0.2054 | 0.3361 | 0.9685 |
| 0.1703 | 6.0 | 84 | 0.2893 | 0.9091 | 0.2020 | 0.3306 | 0.9683 |
| 0.1196 | 7.0 | 98 | 0.2559 | 0.8841 | 0.2054 | 0.3333 | 0.9683 |
| 0.1805 | 8.0 | 112 | 0.2691 | 0.9091 | 0.2020 | 0.3306 | 0.9683 |
| 0.1669 | 9.0 | 126 | 0.2651 | 0.9242 | 0.2054 | 0.3361 | 0.9685 |
| 0.2296 | 10.0 | 140 | 0.3022 | 0.9242 | 0.2054 | 0.3361 | 0.9685 |
| 0.1731 | 11.0 | 154 | 0.2879 | 0.9091 | 0.2020 | 0.3306 | 0.9682 |
| 0.1983 | 12.0 | 168 | 0.2824 | 0.8824 | 0.2020 | 0.3288 | 0.9682 |
| 0.0873 | 13.0 | 182 | 0.3495 | 0.9091 | 0.2020 | 0.3306 | 0.9683 |
| 0.4 | 14.0 | 196 | 0.3905 | 0.9104 | 0.2054 | 0.3352 | 0.9683 |
| 0.2142 | 15.0 | 210 | 0.4198 | 0.9104 | 0.2054 | 0.3352 | 0.9683 |
| 0.2092 | 16.0 | 224 | 0.4395 | 0.9091 | 0.2020 | 0.3306 | 0.9682 |
| 0.0803 | 17.0 | 238 | 0.4003 | 0.9104 | 0.2054 | 0.3352 | 0.9682 |
| 0.1509 | 18.0 | 252 | 0.4904 | 0.9104 | 0.2054 | 0.3352 | 0.9683 |
| 0.1382 | 19.0 | 266 | 0.5018 | 0.9091 | 0.2020 | 0.3306 | 0.9682 |
| 0.0554 | 20.0 | 280 | 0.5128 | 0.9104 | 0.2054 | 0.3352 | 0.9682 |
| 0.0595 | 21.0 | 294 | 0.5363 | 0.9104 | 0.2054 | 0.3352 | 0.9682 |
| 0.0339 | 22.0 | 308 | 0.5518 | 0.9104 | 0.2054 | 0.3352 | 0.9682 |
| 0.0292 | 23.0 | 322 | 0.5613 | 0.8133 | 0.2054 | 0.3280 | 0.9674 |
| 0.0368 | 24.0 | 336 | 0.5555 | 0.9104 | 0.2054 | 0.3352 | 0.9682 |
| 0.0224 | 25.0 | 350 | 0.5709 | 0.3885 | 0.2054 | 0.2687 | 0.9585 |
| 0.0122 | 26.0 | 364 | 0.5753 | 0.3789 | 0.2054 | 0.2664 | 0.9580 |
| 0.0332 | 27.0 | 378 | 0.5800 | 0.3789 | 0.2054 | 0.2664 | 0.9580 |
| 0.02 | 28.0 | 392 | 0.5810 | 0.3789 | 0.2054 | 0.2664 | 0.9580 |
| 0.0155 | 29.0 | 406 | 0.5816 | 0.3789 | 0.2054 | 0.2664 | 0.9580 |
| 0.0157 | 30.0 | 420 | 0.5816 | 0.3789 | 0.2054 | 0.2664 | 0.9580 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|