File size: 2,175 Bytes
886def0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
datasets:
- ajibawa-2023/Code-290k-ShareGPT
- m-a-p/Code-Feedback
- microsoft/orca-math-word-problems-200k
- teknium/openhermes
language:
- en
tags:
- code
- mathematics
---

**Code-Mistral-7B**


This Model is trained on refined version of my dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT).
Besides this it is trained on following datasets:

[Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback)

[orca-math-word-problems-200k](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k)

[Openhermes](https://huggingface.co/datasets/teknium/openhermes)

The idea was to check how this Model will perform with both Code & Maths datasets. This model is very good with Coding. 
Maths is still hit & miss but you can test out this model.

This Model is trained on massive datasets so the results are very good.
I have used ChatML prompt format.

Kindly note this is qLoRA version, a rare exception.


**Training:**
Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took almost 33 Hours. Axolotl codebase was used for training purpose.
Entire data is trained on Mistral.

**Example Prompt:**
This model uses **ChatML** prompt format.

```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```
You can modify above Prompt as per your requirement. 


I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.

Thank you for your love & support.


**Example Output**


**C++**

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/jcmEZSRX7s7-B_ZybWwwN.jpeg)

**Error Resolving**

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/iy89IxjiZXAY4Id-ieLg7.jpeg)

**Matrices**

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/zFfq9lBA63wQzy0tP3_hd.jpeg)

**Machine Learning**

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/Nv8dCpNxRtJGkOuulKzmn.jpeg)