boboliu's picture
Upload CostWiseGemmaForCausalLM
f6d7b71 verified
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from <path_to_diff_file.py>.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the diff. If any change should be done, please apply the change to the
# diff.py file directly.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
import math
from typing import List, Optional, Tuple, Union
import inspect
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
ModelOutput,
)
from .gemma_config import CostWiseGemmaConfig
from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2RotaryEmbedding, rotate_half, apply_rotary_pos_emb
from transformers.models.gemma2.modeling_gemma2 import Gemma2MLP, repeat_kv, Gemma2Attention, Gemma2FlashAttention2, Gemma2SdpaAttention, GEMMA2_ATTENTION_CLASSES, Gemma2DecoderLayer, GEMMA2_START_DOCSTRING
from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
logger = logging.get_logger(__name__)
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
@add_start_docstrings(
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
GEMMA2_START_DOCSTRING,
)
class CostWiseGemma2PreTrainedModel(PreTrainedModel):
config_class = CostWiseGemmaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Gemma2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = False
_supports_quantized_cache = False
_supports_static_cache = True
_is_stateful = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
GEMMA2_ATTENTION_CLASSES = {
"eager": Gemma2Attention,
"flash_attention_2": Gemma2FlashAttention2,
"sdpa": Gemma2SdpaAttention,
}
_CONFIG_FOR_DOC = "CostWiseGemmaConfig"
@dataclass
class CostWiseModelOutputWithPast(ModelOutput):
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class CostWiseCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
attention_masks: Optional[Tuple[torch.FloatTensor]] = None
def token_compress(compress_ratio,
hidden_states,
attention_mask,
query_lengths,
prompt_lengths):
"""
compress_ratio: int
hidden_states: (b, s, h)
attention_mask: (b, s)
query_lengths: (b)
prompt_lengths: (b)
"""
# get some specific parameters
passage_lengths = torch.sum(attention_mask, dim=1, dtype=torch.int) - query_lengths - prompt_lengths # the raw passage lengths (b)
retain_passage_lengths = (passage_lengths + compress_ratio - 1) // compress_ratio # the passage lengths need to be retained (b)
final_useful_lengths = query_lengths + prompt_lengths + retain_passage_lengths # the final useful length after compress (b)
max_passage_length = torch.max(passage_lengths) # the max passage lengths (1)
max_final_lengths = torch.max(final_useful_lengths) # the max useful lengths after compress (1)
# make new hidden states and new attention masks
new_hidden_states = torch.zeros((hidden_states.shape[0], max_final_lengths,
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device) # (b, s', h)
new_attention_mask = torch.ones((hidden_states.shape[0], max_final_lengths), dtype=attention_mask.dtype).to(attention_mask.device) # (b, s')
# get new attention mask
mask_attention_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0) >= final_useful_lengths[:, None]
new_attention_mask[mask_attention_index] = 0
# get new hidden states
# add query into new hidden states
query_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
mask_query_index = query_index < query_lengths[:, None]
new_hidden_states[mask_query_index] = hidden_states[:, : max_final_lengths, :][mask_query_index]
# add prompt into new hidden states
# get the index of the prompt in new hidden states
new_prompt_start_length = query_lengths + retain_passage_lengths
new_prompt_end_length = new_prompt_start_length + prompt_lengths
new_prompt_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
new_mask_prompt_index_start = new_prompt_index >= new_prompt_start_length[:, None]
new_mask_prompt_index_end = new_prompt_index < new_prompt_end_length[:, None]
new_mask_prompt_index = new_mask_prompt_index_start & new_mask_prompt_index_end
# get the index of the prompt in hidden states
raw_prompt_start_length = query_lengths + passage_lengths
raw_prompt_end_length = raw_prompt_start_length + prompt_lengths
raw_prompt_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
raw_mask_prompt_index_start = raw_prompt_index >= raw_prompt_start_length[:, None]
raw_mask_prompt_index_end = raw_prompt_index < raw_prompt_end_length[:, None]
raw_mask_prompt_index = raw_mask_prompt_index_start & raw_mask_prompt_index_end
# replace the prompt hidden states
new_hidden_states[new_mask_prompt_index] = hidden_states[raw_mask_prompt_index]
# 以上均没问题
# print(new_hidden_states.view(len(new_hidden_states), -1))
# print(new_attention_mask)
# get the index of the passage in new hidden states
new_passage_start_length = query_lengths
new_passage_end_length = new_passage_start_length + retain_passage_lengths
new_passage_index = torch.arange(max_final_lengths, device=hidden_states.device).unsqueeze(0)
new_mask_passage_index_start = new_passage_index >= new_passage_start_length[:, None]
new_mask_passage_index_end = new_passage_index < new_passage_end_length[:, None]
new_mask_passage_index = new_mask_passage_index_start & new_mask_passage_index_end
# print(query_lengths, prompt_lengths, retain_passage_lengths, final_useful_lengths)
# add passage into new hidden states
# get mask hidden states
psg_start_length = query_lengths
psg_end_length = query_lengths + passage_lengths
psg_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
mask_psg_index_start = psg_index >= psg_start_length[:, None]
mask_psg_index_end = psg_index < psg_end_length[:, None]
mask_psg_index = mask_psg_index_start & mask_psg_index_end
hidden_states = hidden_states * mask_psg_index.unsqueeze(-1)
passage_hidden_states = torch.zeros((hidden_states.shape[0],
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio,
hidden_states.shape[-1]), dtype=hidden_states.dtype).to(hidden_states.device)
passage_end_length = passage_lengths
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0) # maybe exceed the max passage length
mask_passage_index = passage_index < passage_end_length[:, None]
raw_passage_end_length = query_lengths + passage_lengths
raw_passage_start_length = query_lengths
raw_passage_index = torch.arange(hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
raw_mask_passage_index_start = raw_passage_index >= raw_passage_start_length[:, None]
raw_mask_passage_index_end = raw_passage_index < raw_passage_end_length[:, None]
raw_mask_passage_index = raw_mask_passage_index_start & raw_mask_passage_index_end
passage_hidden_states[mask_passage_index] = hidden_states[raw_mask_passage_index]
passage_weights = torch.zeros((hidden_states.shape[0],
(max_passage_length + compress_ratio - 1) // compress_ratio * compress_ratio)
, dtype=hidden_states.dtype).to(hidden_states.device)
passage_weights[mask_passage_index] = 1
passage_weights = passage_weights.view(passage_weights.shape[0], -1, compress_ratio)
passage_weights = passage_weights / torch.sum(passage_weights, dim=-1
).view(passage_weights.shape[0], -1, 1)
passage_weights = passage_weights.view(passage_weights.shape[0], -1)
# passage_weights = torch.where(passage_weights == torch.nan, 0, passage_weights)
passage_hidden_states = passage_hidden_states * passage_weights.unsqueeze(-1)
passage_hidden_states = passage_hidden_states.view(passage_hidden_states.shape[0], -1, compress_ratio,
passage_hidden_states.shape[-1])
passage_hidden_states = torch.sum(passage_hidden_states, dim=2)
passage_end_length = retain_passage_lengths
passage_index = torch.arange(passage_hidden_states.shape[1], device=hidden_states.device).unsqueeze(0)
mask_passage_index = passage_index < passage_end_length[:, None]
new_hidden_states[new_mask_passage_index] = passage_hidden_states[mask_passage_index]
return new_hidden_states, new_attention_mask
@add_start_docstrings(
"The bare Gemma2 Model outputting raw hidden-states without any specific head on top.",
GEMMA2_START_DOCSTRING,
)
class CostWiseGemmaModel(CostWiseGemma2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GemmaDecoderLayer`]
Args:
config: GemmaConfig
"""
def __init__(self, config: CostWiseGemmaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
compress_layer: Optional[int] = None,
compress_ratio: Optional[int] = None,
cutoff_layers: Optional[List[int]] = None,
query_lengths: Optional[int] = None,
prompt_lengths: Optional[int] = None,
) -> Union[Tuple, CostWiseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
compress_ratio = None if compress_ratio == 1 else compress_ratio
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.config.layer_wise:
output_hidden_states = True
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if compress_layer is not None and compress_ratio is not None:
logger.warning_once(
"`use_cache=True` is incompatible with reranker. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# normalized
# Gemma downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_attention_masks = ()
all_self_attns = () if output_attentions else None
next_decoder_cache = None
is_padding_left = (attention_mask[:, -1].sum() == attention_mask.shape[0]) and (
torch.sum(attention_mask) != attention_mask.shape[0] * attention_mask.shape[1])
query_lengths = [0] * hidden_states.shape[0] if query_lengths is None else query_lengths
prompt_lengths = [0] * hidden_states.shape[0] if prompt_lengths is None else prompt_lengths
if not isinstance(query_lengths, torch.Tensor):
query_lengths = torch.tensor(query_lengths, device=hidden_states.device)
if not isinstance(prompt_lengths, torch.Tensor):
prompt_lengths = torch.tensor(prompt_lengths, device=hidden_states.device)
if cutoff_layers is None:
max_layer = self.config.num_hidden_layers
cutoff_layers = [max_layer]
if isinstance(cutoff_layers, int):
max_layer = cutoff_layers
cutoff_layers = [cutoff_layers]
else:
max_layer = max(cutoff_layers)
for idx, decoder_layer in enumerate(self.layers):
if self.config.layer_wise:
if idx in cutoff_layers and output_hidden_states:
all_hidden_states += (self.norm(hidden_states),)
all_attention_masks += (attention_mask,)
if idx == max_layer:
break
elif output_hidden_states:
all_hidden_states += (hidden_states,)
if compress_layer is not None and compress_ratio is not None and idx in compress_layer and idx != 0:
if is_padding_left:
raise ValueError('You must use right padding...')
hidden_states, attention_mask = token_compress(compress_ratio, hidden_states, attention_mask,
query_lengths, prompt_lengths)
seq_length = hidden_states.shape[1]
cache_position = torch.arange(0, seq_length, device=hidden_states.device)
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, hidden_states, cache_position, past_key_values, output_attentions
)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if not self.config.layer_wise:
if output_hidden_states:
all_hidden_states += (hidden_states,)
all_attention_masks += (attention_mask,)
else:
if output_hidden_states and self.config.num_hidden_layers == max_layer:
all_hidden_states += (hidden_states,)
all_attention_masks += (attention_mask,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return CostWiseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
attention_masks=all_attention_masks
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if past_key_values is not None:
target_length = past_key_values.get_max_length()
else:
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
if attention_mask is not None and attention_mask.dim() == 4:
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
if attention_mask.max() != 0:
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class CostWiseHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, input_size, output_size):
super().__init__()
self.linear_head = nn.Linear(input_size, output_size, bias=False)
def forward(self, **kwargs):
return self.linear_head(**kwargs)
class CostWiseGemmaForCausalLM(CostWiseGemma2PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: CostWiseGemmaConfig):
super().__init__(config)
self.model = CostWiseGemmaModel(config)
self.vocab_size = config.vocab_size
if not config.layer_wise:
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
else:
self.lm_head = nn.ModuleList(
[CostWiseHead(config.hidden_size, 1) for _ in range(
config.start_layer, config.num_hidden_layers + 1, config.layer_sep
)]
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
compress_layer: Optional[int] = None,
compress_ratio: Optional[int] = None,
cutoff_layers: Optional[List[int]] = None,
query_lengths: Optional[int] = None,
prompt_lengths: Optional[int] = None,
) -> Union[Tuple, CostWiseCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if compress_ratio is not None and compress_ratio == 1:
compress_ratio = None
if self.config.layer_wise:
if cutoff_layers is None:
cutoff_layers = [self.config.num_hidden_layers]
elif isinstance(cutoff_layers, int):
cutoff_layers = [cutoff_layers]
can_use_layers = list(range(self.config.start_layer, self.config.num_hidden_layers + 1, self.config.layer_sep))
remove_layers = [i for i in cutoff_layers if i not in can_use_layers]
if len(remove_layers) > 0:
logger.warning_once(
f"layers {remove_layers} are incompatible with the setting. They will be removed..."
)
cutoff_layers = [i for i in cutoff_layers if i not in remove_layers]
if len(cutoff_layers) == 0:
raise ValueError(f"Your cutoff layers must in [{self.config.start_layer}, {self.config.num_hidden_layers}]")
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
compress_layer=compress_layer,
compress_ratio=compress_ratio,
query_lengths=query_lengths,
prompt_lengths=prompt_lengths,
cutoff_layers=cutoff_layers,
)
if not self.config.layer_wise:
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
else:
hidden_states = outputs.hidden_states
logits = ()
for i in range(len(hidden_states)):
tmp_logits = self.lm_head[i].linear_head(hidden_states[i])
if self.config.final_logit_softcapping is not None:
tmp_logits = tmp_logits / self.config.final_logit_softcapping
tmp_logits = torch.tanh(tmp_logits)
tmp_logits = tmp_logits * self.config.final_logit_softcapping
tmp_logits = tmp_logits.float()
tmp_logits = tmp_logits.reshape(hidden_states[i].shape[0], -1)
logits = logits + (tmp_logits,)
loss = None
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CostWiseCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
attention_masks=outputs[-1] if self.model.config.layer_wise else outputs[-1][-1]
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
use_cache=True,
**kwargs,
):
past_length = 0
if past_key_values is not None:
# Past key values are always initialized with a `Cache` object -> no need for if-else anymore
past_length = cache_position[0] if cache_position is not None else torch.tensor(0, device=input_ids.device)
max_cache_length = (
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
if past_key_values.get_max_length() is not None
else None
)
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_length == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
if cache_position is None:
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
elif use_cache:
cache_position = cache_position[-input_length:]
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past