Training in progress, step 305, checkpoint
Browse files- checkpoint-305/1_AdvancedWeightedPooling/config.json +12 -0
- checkpoint-305/1_AdvancedWeightedPooling/pytorch_model.bin +3 -0
- checkpoint-305/README.md +1158 -0
- checkpoint-305/added_tokens.json +3 -0
- checkpoint-305/config.json +35 -0
- checkpoint-305/config_sentence_transformers.json +10 -0
- checkpoint-305/modules.json +14 -0
- checkpoint-305/optimizer.pt +3 -0
- checkpoint-305/pytorch_model.bin +3 -0
- checkpoint-305/rng_state.pth +3 -0
- checkpoint-305/scheduler.pt +3 -0
- checkpoint-305/sentence_bert_config.json +4 -0
- checkpoint-305/special_tokens_map.json +15 -0
- checkpoint-305/spm.model +3 -0
- checkpoint-305/tokenizer.json +0 -0
- checkpoint-305/tokenizer_config.json +58 -0
- checkpoint-305/trainer_state.json +2257 -0
- checkpoint-305/training_args.bin +3 -0
checkpoint-305/1_AdvancedWeightedPooling/config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"num_heads": 4,
|
4 |
+
"dropout": 0.025,
|
5 |
+
"bias": true,
|
6 |
+
"gate_min": 0.05,
|
7 |
+
"gate_max": 0.95,
|
8 |
+
"gate_dropout": 0.01,
|
9 |
+
"dropout_gate_open": 0.075,
|
10 |
+
"dropout_gate_close": 0.05,
|
11 |
+
"CLS_self_attn": 0
|
12 |
+
}
|
checkpoint-305/1_AdvancedWeightedPooling/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68b599379e5b06ef871fb82d51b71a5d4b321a2416ef815c4c2bbb4dc6f7ed7f
|
3 |
+
size 18940723
|
checkpoint-305/README.md
ADDED
@@ -0,0 +1,1158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/deberta-v3-small
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- pearson_cosine
|
6 |
+
- spearman_cosine
|
7 |
+
- pearson_manhattan
|
8 |
+
- spearman_manhattan
|
9 |
+
- pearson_euclidean
|
10 |
+
- spearman_euclidean
|
11 |
+
- pearson_dot
|
12 |
+
- spearman_dot
|
13 |
+
- pearson_max
|
14 |
+
- spearman_max
|
15 |
+
- cosine_accuracy
|
16 |
+
- cosine_accuracy_threshold
|
17 |
+
- cosine_f1
|
18 |
+
- cosine_f1_threshold
|
19 |
+
- cosine_precision
|
20 |
+
- cosine_recall
|
21 |
+
- cosine_ap
|
22 |
+
- dot_accuracy
|
23 |
+
- dot_accuracy_threshold
|
24 |
+
- dot_f1
|
25 |
+
- dot_f1_threshold
|
26 |
+
- dot_precision
|
27 |
+
- dot_recall
|
28 |
+
- dot_ap
|
29 |
+
- manhattan_accuracy
|
30 |
+
- manhattan_accuracy_threshold
|
31 |
+
- manhattan_f1
|
32 |
+
- manhattan_f1_threshold
|
33 |
+
- manhattan_precision
|
34 |
+
- manhattan_recall
|
35 |
+
- manhattan_ap
|
36 |
+
- euclidean_accuracy
|
37 |
+
- euclidean_accuracy_threshold
|
38 |
+
- euclidean_f1
|
39 |
+
- euclidean_f1_threshold
|
40 |
+
- euclidean_precision
|
41 |
+
- euclidean_recall
|
42 |
+
- euclidean_ap
|
43 |
+
- max_accuracy
|
44 |
+
- max_accuracy_threshold
|
45 |
+
- max_f1
|
46 |
+
- max_f1_threshold
|
47 |
+
- max_precision
|
48 |
+
- max_recall
|
49 |
+
- max_ap
|
50 |
+
pipeline_tag: sentence-similarity
|
51 |
+
tags:
|
52 |
+
- sentence-transformers
|
53 |
+
- sentence-similarity
|
54 |
+
- feature-extraction
|
55 |
+
- generated_from_trainer
|
56 |
+
- dataset_size:32500
|
57 |
+
- loss:GISTEmbedLoss
|
58 |
+
widget:
|
59 |
+
- source_sentence: Fish hatch into larvae that are different from the adult form of
|
60 |
+
species.
|
61 |
+
sentences:
|
62 |
+
- Fish hatch into larvae that are different from the adult form of?
|
63 |
+
- amphibians hatch from eggs
|
64 |
+
- A solenoid or coil wrapped around iron or certain other metals can form a(n) electromagnet.
|
65 |
+
- source_sentence: About 200 countries and territories have reported coronavirus cases
|
66 |
+
in 2020 .
|
67 |
+
sentences:
|
68 |
+
- All-Time Olympic Games Medal Tally Analysis Home > Events > Olympics > Summer
|
69 |
+
> Medal Tally > All-Time All-Time Olympic Games Medal Tally (Summer Olympics)
|
70 |
+
Which country is the most successful at he Olympic Games? Here are the top ranked
|
71 |
+
countries in terms of total medals won when all of the summer Games are considered
|
72 |
+
(including the 2016 Rio Games). There are two tables presented, the first just
|
73 |
+
lists the top countries based on the total medals won, the second table factors
|
74 |
+
in how many Olympic Games the country appeared, averaging the total number of
|
75 |
+
medals per Olympiad. A victory in a team sport is counted as one medal. The USA
|
76 |
+
Has Won the Most Medals The US have clearly won the most gold medals and the most
|
77 |
+
medals overall, more than doubling the next ranked country (these figures include
|
78 |
+
medals won in Rio 2016). Second placed USSR had fewer appearances at the Olympics,
|
79 |
+
and actually won more medals on average (see the 2nd table). The top 10 includes
|
80 |
+
one country no longer in existence (the Soviet Union), so their medal totals will
|
81 |
+
obviously not increase, however China is expected to continue a rapid rise up
|
82 |
+
the ranks. With the addition of the 2016 data, China has moved up from 11th (in
|
83 |
+
2008) to 9th (2012) to 7th (2016). The country which has attended the most games
|
84 |
+
without a medal is Monaco (20 Olympic Games), the country which has won the most
|
85 |
+
medals without winning a gold medal is Malaysia (0 gold, 7 silver, 4 bronze).
|
86 |
+
rank
|
87 |
+
- An example of a reproductive behavior is salmon returning to their birthplace
|
88 |
+
to lay their eggs
|
89 |
+
- more than 664,000 cases of COVID-19 have been reported in over 190 countries and
|
90 |
+
territories , resulting in approximately 30,800 deaths .
|
91 |
+
- source_sentence: The wave on a guitar string is transverse. the sound wave rattles
|
92 |
+
a sheet of paper in a direction that shows the sound wave is what?
|
93 |
+
sentences:
|
94 |
+
- A Honda motorcycle parked in a grass driveway
|
95 |
+
- In Panama tipping is a question of rewarding good service rather than an obligation.
|
96 |
+
Restaurant bills don't include gratuities; adding 10% is customary. Bellhops and
|
97 |
+
maids expect tips only in more expensive hotels, and $1–$2 per bag is the norm.
|
98 |
+
You should also give a tip of up to $10 per day to tour guides.
|
99 |
+
- Figure 16.33 The wave on a guitar string is transverse. The sound wave rattles
|
100 |
+
a sheet of paper in a direction that shows the sound wave is longitudinal.
|
101 |
+
- source_sentence: The thermal production of a stove is generically used for
|
102 |
+
sentences:
|
103 |
+
- In total , 28 US victims were killed , while Viet Cong losses were killed 345
|
104 |
+
and a further 192 estimated killed .
|
105 |
+
- a stove generates heat for cooking usually
|
106 |
+
- A teenager has been charged over an incident in which a four-year-old girl was
|
107 |
+
hurt when she was hit in the face by a brick thrown through a van window.
|
108 |
+
- source_sentence: can sweet potatoes cause itching?
|
109 |
+
sentences:
|
110 |
+
- 'People with a true potato allergy may react immediately after touching, peeling,
|
111 |
+
or eating potatoes. Symptoms may vary from person to person, but typical symptoms
|
112 |
+
of a potato allergy include: rhinitis, including itchy or stinging eyes, a runny
|
113 |
+
or stuffy nose, and sneezing.'
|
114 |
+
- riding a bike does not cause pollution
|
115 |
+
- "Dilation occurs when cell walls relax.. An aneurysm is a dilation, or bubble,\
|
116 |
+
\ that occurs in the wall of an artery. \n an artery can be relaxed by dilation"
|
117 |
+
model-index:
|
118 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-small
|
119 |
+
results:
|
120 |
+
- task:
|
121 |
+
type: semantic-similarity
|
122 |
+
name: Semantic Similarity
|
123 |
+
dataset:
|
124 |
+
name: sts test
|
125 |
+
type: sts-test
|
126 |
+
metrics:
|
127 |
+
- type: pearson_cosine
|
128 |
+
value: 0.2749904272806095
|
129 |
+
name: Pearson Cosine
|
130 |
+
- type: spearman_cosine
|
131 |
+
value: 0.31159390381099095
|
132 |
+
name: Spearman Cosine
|
133 |
+
- type: pearson_manhattan
|
134 |
+
value: 0.2923996087310511
|
135 |
+
name: Pearson Manhattan
|
136 |
+
- type: spearman_manhattan
|
137 |
+
value: 0.3095556181083969
|
138 |
+
name: Spearman Manhattan
|
139 |
+
- type: pearson_euclidean
|
140 |
+
value: 0.2934483033082174
|
141 |
+
name: Pearson Euclidean
|
142 |
+
- type: spearman_euclidean
|
143 |
+
value: 0.3115817314678925
|
144 |
+
name: Spearman Euclidean
|
145 |
+
- type: pearson_dot
|
146 |
+
value: 0.27496363262371837
|
147 |
+
name: Pearson Dot
|
148 |
+
- type: spearman_dot
|
149 |
+
value: 0.31138581044552094
|
150 |
+
name: Spearman Dot
|
151 |
+
- type: pearson_max
|
152 |
+
value: 0.2934483033082174
|
153 |
+
name: Pearson Max
|
154 |
+
- type: spearman_max
|
155 |
+
value: 0.31159390381099095
|
156 |
+
name: Spearman Max
|
157 |
+
- task:
|
158 |
+
type: binary-classification
|
159 |
+
name: Binary Classification
|
160 |
+
dataset:
|
161 |
+
name: allNLI dev
|
162 |
+
type: allNLI-dev
|
163 |
+
metrics:
|
164 |
+
- type: cosine_accuracy
|
165 |
+
value: 0.67578125
|
166 |
+
name: Cosine Accuracy
|
167 |
+
- type: cosine_accuracy_threshold
|
168 |
+
value: 0.9452645182609558
|
169 |
+
name: Cosine Accuracy Threshold
|
170 |
+
- type: cosine_f1
|
171 |
+
value: 0.512
|
172 |
+
name: Cosine F1
|
173 |
+
- type: cosine_f1_threshold
|
174 |
+
value: 0.8565204739570618
|
175 |
+
name: Cosine F1 Threshold
|
176 |
+
- type: cosine_precision
|
177 |
+
value: 0.39143730886850153
|
178 |
+
name: Cosine Precision
|
179 |
+
- type: cosine_recall
|
180 |
+
value: 0.7398843930635838
|
181 |
+
name: Cosine Recall
|
182 |
+
- type: cosine_ap
|
183 |
+
value: 0.4264736612515921
|
184 |
+
name: Cosine Ap
|
185 |
+
- type: dot_accuracy
|
186 |
+
value: 0.67578125
|
187 |
+
name: Dot Accuracy
|
188 |
+
- type: dot_accuracy_threshold
|
189 |
+
value: 726.30615234375
|
190 |
+
name: Dot Accuracy Threshold
|
191 |
+
- type: dot_f1
|
192 |
+
value: 0.512
|
193 |
+
name: Dot F1
|
194 |
+
- type: dot_f1_threshold
|
195 |
+
value: 658.1103515625
|
196 |
+
name: Dot F1 Threshold
|
197 |
+
- type: dot_precision
|
198 |
+
value: 0.39143730886850153
|
199 |
+
name: Dot Precision
|
200 |
+
- type: dot_recall
|
201 |
+
value: 0.7398843930635838
|
202 |
+
name: Dot Recall
|
203 |
+
- type: dot_ap
|
204 |
+
value: 0.42647535250956575
|
205 |
+
name: Dot Ap
|
206 |
+
- type: manhattan_accuracy
|
207 |
+
value: 0.67578125
|
208 |
+
name: Manhattan Accuracy
|
209 |
+
- type: manhattan_accuracy_threshold
|
210 |
+
value: 201.49061584472656
|
211 |
+
name: Manhattan Accuracy Threshold
|
212 |
+
- type: manhattan_f1
|
213 |
+
value: 0.5107692307692308
|
214 |
+
name: Manhattan F1
|
215 |
+
- type: manhattan_f1_threshold
|
216 |
+
value: 417.52728271484375
|
217 |
+
name: Manhattan F1 Threshold
|
218 |
+
- type: manhattan_precision
|
219 |
+
value: 0.3480083857442348
|
220 |
+
name: Manhattan Precision
|
221 |
+
- type: manhattan_recall
|
222 |
+
value: 0.9595375722543352
|
223 |
+
name: Manhattan Recall
|
224 |
+
- type: manhattan_ap
|
225 |
+
value: 0.4252213828672732
|
226 |
+
name: Manhattan Ap
|
227 |
+
- type: euclidean_accuracy
|
228 |
+
value: 0.67578125
|
229 |
+
name: Euclidean Accuracy
|
230 |
+
- type: euclidean_accuracy_threshold
|
231 |
+
value: 9.171283721923828
|
232 |
+
name: Euclidean Accuracy Threshold
|
233 |
+
- type: euclidean_f1
|
234 |
+
value: 0.512
|
235 |
+
name: Euclidean F1
|
236 |
+
- type: euclidean_f1_threshold
|
237 |
+
value: 14.84876823425293
|
238 |
+
name: Euclidean F1 Threshold
|
239 |
+
- type: euclidean_precision
|
240 |
+
value: 0.39143730886850153
|
241 |
+
name: Euclidean Precision
|
242 |
+
- type: euclidean_recall
|
243 |
+
value: 0.7398843930635838
|
244 |
+
name: Euclidean Recall
|
245 |
+
- type: euclidean_ap
|
246 |
+
value: 0.4264736612515921
|
247 |
+
name: Euclidean Ap
|
248 |
+
- type: max_accuracy
|
249 |
+
value: 0.67578125
|
250 |
+
name: Max Accuracy
|
251 |
+
- type: max_accuracy_threshold
|
252 |
+
value: 726.30615234375
|
253 |
+
name: Max Accuracy Threshold
|
254 |
+
- type: max_f1
|
255 |
+
value: 0.512
|
256 |
+
name: Max F1
|
257 |
+
- type: max_f1_threshold
|
258 |
+
value: 658.1103515625
|
259 |
+
name: Max F1 Threshold
|
260 |
+
- type: max_precision
|
261 |
+
value: 0.39143730886850153
|
262 |
+
name: Max Precision
|
263 |
+
- type: max_recall
|
264 |
+
value: 0.9595375722543352
|
265 |
+
name: Max Recall
|
266 |
+
- type: max_ap
|
267 |
+
value: 0.42647535250956575
|
268 |
+
name: Max Ap
|
269 |
+
- task:
|
270 |
+
type: binary-classification
|
271 |
+
name: Binary Classification
|
272 |
+
dataset:
|
273 |
+
name: Qnli dev
|
274 |
+
type: Qnli-dev
|
275 |
+
metrics:
|
276 |
+
- type: cosine_accuracy
|
277 |
+
value: 0.634765625
|
278 |
+
name: Cosine Accuracy
|
279 |
+
- type: cosine_accuracy_threshold
|
280 |
+
value: 0.8508153557777405
|
281 |
+
name: Cosine Accuracy Threshold
|
282 |
+
- type: cosine_f1
|
283 |
+
value: 0.6505636070853462
|
284 |
+
name: Cosine F1
|
285 |
+
- type: cosine_f1_threshold
|
286 |
+
value: 0.7770615816116333
|
287 |
+
name: Cosine F1 Threshold
|
288 |
+
- type: cosine_precision
|
289 |
+
value: 0.5246753246753246
|
290 |
+
name: Cosine Precision
|
291 |
+
- type: cosine_recall
|
292 |
+
value: 0.8559322033898306
|
293 |
+
name: Cosine Recall
|
294 |
+
- type: cosine_ap
|
295 |
+
value: 0.6461335447626624
|
296 |
+
name: Cosine Ap
|
297 |
+
- type: dot_accuracy
|
298 |
+
value: 0.634765625
|
299 |
+
name: Dot Accuracy
|
300 |
+
- type: dot_accuracy_threshold
|
301 |
+
value: 653.7443237304688
|
302 |
+
name: Dot Accuracy Threshold
|
303 |
+
- type: dot_f1
|
304 |
+
value: 0.6505636070853462
|
305 |
+
name: Dot F1
|
306 |
+
- type: dot_f1_threshold
|
307 |
+
value: 597.0731811523438
|
308 |
+
name: Dot F1 Threshold
|
309 |
+
- type: dot_precision
|
310 |
+
value: 0.5246753246753246
|
311 |
+
name: Dot Precision
|
312 |
+
- type: dot_recall
|
313 |
+
value: 0.8559322033898306
|
314 |
+
name: Dot Recall
|
315 |
+
- type: dot_ap
|
316 |
+
value: 0.6461682282377894
|
317 |
+
name: Dot Ap
|
318 |
+
- type: manhattan_accuracy
|
319 |
+
value: 0.6328125
|
320 |
+
name: Manhattan Accuracy
|
321 |
+
- type: manhattan_accuracy_threshold
|
322 |
+
value: 331.46282958984375
|
323 |
+
name: Manhattan Accuracy Threshold
|
324 |
+
- type: manhattan_f1
|
325 |
+
value: 0.6501650165016502
|
326 |
+
name: Manhattan F1
|
327 |
+
- type: manhattan_f1_threshold
|
328 |
+
value: 404.6050109863281
|
329 |
+
name: Manhattan F1 Threshold
|
330 |
+
- type: manhattan_precision
|
331 |
+
value: 0.5324324324324324
|
332 |
+
name: Manhattan Precision
|
333 |
+
- type: manhattan_recall
|
334 |
+
value: 0.8347457627118644
|
335 |
+
name: Manhattan Recall
|
336 |
+
- type: manhattan_ap
|
337 |
+
value: 0.6431949026371255
|
338 |
+
name: Manhattan Ap
|
339 |
+
- type: euclidean_accuracy
|
340 |
+
value: 0.634765625
|
341 |
+
name: Euclidean Accuracy
|
342 |
+
- type: euclidean_accuracy_threshold
|
343 |
+
value: 15.141305923461914
|
344 |
+
name: Euclidean Accuracy Threshold
|
345 |
+
- type: euclidean_f1
|
346 |
+
value: 0.6505636070853462
|
347 |
+
name: Euclidean F1
|
348 |
+
- type: euclidean_f1_threshold
|
349 |
+
value: 18.50943946838379
|
350 |
+
name: Euclidean F1 Threshold
|
351 |
+
- type: euclidean_precision
|
352 |
+
value: 0.5246753246753246
|
353 |
+
name: Euclidean Precision
|
354 |
+
- type: euclidean_recall
|
355 |
+
value: 0.8559322033898306
|
356 |
+
name: Euclidean Recall
|
357 |
+
- type: euclidean_ap
|
358 |
+
value: 0.6461382925406688
|
359 |
+
name: Euclidean Ap
|
360 |
+
- type: max_accuracy
|
361 |
+
value: 0.634765625
|
362 |
+
name: Max Accuracy
|
363 |
+
- type: max_accuracy_threshold
|
364 |
+
value: 653.7443237304688
|
365 |
+
name: Max Accuracy Threshold
|
366 |
+
- type: max_f1
|
367 |
+
value: 0.6505636070853462
|
368 |
+
name: Max F1
|
369 |
+
- type: max_f1_threshold
|
370 |
+
value: 597.0731811523438
|
371 |
+
name: Max F1 Threshold
|
372 |
+
- type: max_precision
|
373 |
+
value: 0.5324324324324324
|
374 |
+
name: Max Precision
|
375 |
+
- type: max_recall
|
376 |
+
value: 0.8559322033898306
|
377 |
+
name: Max Recall
|
378 |
+
- type: max_ap
|
379 |
+
value: 0.6461682282377894
|
380 |
+
name: Max Ap
|
381 |
+
---
|
382 |
+
|
383 |
+
# SentenceTransformer based on microsoft/deberta-v3-small
|
384 |
+
|
385 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
386 |
+
|
387 |
+
## Model Details
|
388 |
+
|
389 |
+
### Model Description
|
390 |
+
- **Model Type:** Sentence Transformer
|
391 |
+
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
|
392 |
+
- **Maximum Sequence Length:** 512 tokens
|
393 |
+
- **Output Dimensionality:** 768 tokens
|
394 |
+
- **Similarity Function:** Cosine Similarity
|
395 |
+
<!-- - **Training Dataset:** Unknown -->
|
396 |
+
<!-- - **Language:** Unknown -->
|
397 |
+
<!-- - **License:** Unknown -->
|
398 |
+
|
399 |
+
### Model Sources
|
400 |
+
|
401 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
402 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
403 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
404 |
+
|
405 |
+
### Full Model Architecture
|
406 |
+
|
407 |
+
```
|
408 |
+
SentenceTransformer(
|
409 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
410 |
+
(1): AdvancedWeightedPooling(
|
411 |
+
(alpha_dropout_layer): Dropout(p=0.01, inplace=False)
|
412 |
+
(gate_dropout_layer): Dropout(p=0.05, inplace=False)
|
413 |
+
(linear_cls_pj): Linear(in_features=768, out_features=768, bias=True)
|
414 |
+
(linear_cls_Qpj): Linear(in_features=768, out_features=768, bias=True)
|
415 |
+
(linear_mean_pj): Linear(in_features=768, out_features=768, bias=True)
|
416 |
+
(linear_attnOut): Linear(in_features=768, out_features=768, bias=True)
|
417 |
+
(mha): MultiheadAttention(
|
418 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
419 |
+
)
|
420 |
+
(layernorm_output): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
421 |
+
(layernorm_weightedPooing): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
422 |
+
(layernorm_pjCls): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
423 |
+
(layernorm_pjMean): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
424 |
+
(layernorm_attnOut): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
425 |
+
)
|
426 |
+
)
|
427 |
+
```
|
428 |
+
|
429 |
+
## Usage
|
430 |
+
|
431 |
+
### Direct Usage (Sentence Transformers)
|
432 |
+
|
433 |
+
First install the Sentence Transformers library:
|
434 |
+
|
435 |
+
```bash
|
436 |
+
pip install -U sentence-transformers
|
437 |
+
```
|
438 |
+
|
439 |
+
Then you can load this model and run inference.
|
440 |
+
```python
|
441 |
+
from sentence_transformers import SentenceTransformer
|
442 |
+
|
443 |
+
# Download from the 🤗 Hub
|
444 |
+
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-toytest3-step1-checkpoints-tmp")
|
445 |
+
# Run inference
|
446 |
+
sentences = [
|
447 |
+
'can sweet potatoes cause itching?',
|
448 |
+
'People with a true potato allergy may react immediately after touching, peeling, or eating potatoes. Symptoms may vary from person to person, but typical symptoms of a potato allergy include: rhinitis, including itchy or stinging eyes, a runny or stuffy nose, and sneezing.',
|
449 |
+
'riding a bike does not cause pollution',
|
450 |
+
]
|
451 |
+
embeddings = model.encode(sentences)
|
452 |
+
print(embeddings.shape)
|
453 |
+
# [3, 768]
|
454 |
+
|
455 |
+
# Get the similarity scores for the embeddings
|
456 |
+
similarities = model.similarity(embeddings, embeddings)
|
457 |
+
print(similarities.shape)
|
458 |
+
# [3, 3]
|
459 |
+
```
|
460 |
+
|
461 |
+
<!--
|
462 |
+
### Direct Usage (Transformers)
|
463 |
+
|
464 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
465 |
+
|
466 |
+
</details>
|
467 |
+
-->
|
468 |
+
|
469 |
+
<!--
|
470 |
+
### Downstream Usage (Sentence Transformers)
|
471 |
+
|
472 |
+
You can finetune this model on your own dataset.
|
473 |
+
|
474 |
+
<details><summary>Click to expand</summary>
|
475 |
+
|
476 |
+
</details>
|
477 |
+
-->
|
478 |
+
|
479 |
+
<!--
|
480 |
+
### Out-of-Scope Use
|
481 |
+
|
482 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
483 |
+
-->
|
484 |
+
|
485 |
+
## Evaluation
|
486 |
+
|
487 |
+
### Metrics
|
488 |
+
|
489 |
+
#### Semantic Similarity
|
490 |
+
* Dataset: `sts-test`
|
491 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
492 |
+
|
493 |
+
| Metric | Value |
|
494 |
+
|:--------------------|:-----------|
|
495 |
+
| pearson_cosine | 0.275 |
|
496 |
+
| **spearman_cosine** | **0.3116** |
|
497 |
+
| pearson_manhattan | 0.2924 |
|
498 |
+
| spearman_manhattan | 0.3096 |
|
499 |
+
| pearson_euclidean | 0.2934 |
|
500 |
+
| spearman_euclidean | 0.3116 |
|
501 |
+
| pearson_dot | 0.275 |
|
502 |
+
| spearman_dot | 0.3114 |
|
503 |
+
| pearson_max | 0.2934 |
|
504 |
+
| spearman_max | 0.3116 |
|
505 |
+
|
506 |
+
#### Binary Classification
|
507 |
+
* Dataset: `allNLI-dev`
|
508 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
509 |
+
|
510 |
+
| Metric | Value |
|
511 |
+
|:-----------------------------|:-----------|
|
512 |
+
| cosine_accuracy | 0.6758 |
|
513 |
+
| cosine_accuracy_threshold | 0.9453 |
|
514 |
+
| cosine_f1 | 0.512 |
|
515 |
+
| cosine_f1_threshold | 0.8565 |
|
516 |
+
| cosine_precision | 0.3914 |
|
517 |
+
| cosine_recall | 0.7399 |
|
518 |
+
| cosine_ap | 0.4265 |
|
519 |
+
| dot_accuracy | 0.6758 |
|
520 |
+
| dot_accuracy_threshold | 726.3062 |
|
521 |
+
| dot_f1 | 0.512 |
|
522 |
+
| dot_f1_threshold | 658.1104 |
|
523 |
+
| dot_precision | 0.3914 |
|
524 |
+
| dot_recall | 0.7399 |
|
525 |
+
| dot_ap | 0.4265 |
|
526 |
+
| manhattan_accuracy | 0.6758 |
|
527 |
+
| manhattan_accuracy_threshold | 201.4906 |
|
528 |
+
| manhattan_f1 | 0.5108 |
|
529 |
+
| manhattan_f1_threshold | 417.5273 |
|
530 |
+
| manhattan_precision | 0.348 |
|
531 |
+
| manhattan_recall | 0.9595 |
|
532 |
+
| manhattan_ap | 0.4252 |
|
533 |
+
| euclidean_accuracy | 0.6758 |
|
534 |
+
| euclidean_accuracy_threshold | 9.1713 |
|
535 |
+
| euclidean_f1 | 0.512 |
|
536 |
+
| euclidean_f1_threshold | 14.8488 |
|
537 |
+
| euclidean_precision | 0.3914 |
|
538 |
+
| euclidean_recall | 0.7399 |
|
539 |
+
| euclidean_ap | 0.4265 |
|
540 |
+
| max_accuracy | 0.6758 |
|
541 |
+
| max_accuracy_threshold | 726.3062 |
|
542 |
+
| max_f1 | 0.512 |
|
543 |
+
| max_f1_threshold | 658.1104 |
|
544 |
+
| max_precision | 0.3914 |
|
545 |
+
| max_recall | 0.9595 |
|
546 |
+
| **max_ap** | **0.4265** |
|
547 |
+
|
548 |
+
#### Binary Classification
|
549 |
+
* Dataset: `Qnli-dev`
|
550 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
551 |
+
|
552 |
+
| Metric | Value |
|
553 |
+
|:-----------------------------|:-----------|
|
554 |
+
| cosine_accuracy | 0.6348 |
|
555 |
+
| cosine_accuracy_threshold | 0.8508 |
|
556 |
+
| cosine_f1 | 0.6506 |
|
557 |
+
| cosine_f1_threshold | 0.7771 |
|
558 |
+
| cosine_precision | 0.5247 |
|
559 |
+
| cosine_recall | 0.8559 |
|
560 |
+
| cosine_ap | 0.6461 |
|
561 |
+
| dot_accuracy | 0.6348 |
|
562 |
+
| dot_accuracy_threshold | 653.7443 |
|
563 |
+
| dot_f1 | 0.6506 |
|
564 |
+
| dot_f1_threshold | 597.0732 |
|
565 |
+
| dot_precision | 0.5247 |
|
566 |
+
| dot_recall | 0.8559 |
|
567 |
+
| dot_ap | 0.6462 |
|
568 |
+
| manhattan_accuracy | 0.6328 |
|
569 |
+
| manhattan_accuracy_threshold | 331.4628 |
|
570 |
+
| manhattan_f1 | 0.6502 |
|
571 |
+
| manhattan_f1_threshold | 404.605 |
|
572 |
+
| manhattan_precision | 0.5324 |
|
573 |
+
| manhattan_recall | 0.8347 |
|
574 |
+
| manhattan_ap | 0.6432 |
|
575 |
+
| euclidean_accuracy | 0.6348 |
|
576 |
+
| euclidean_accuracy_threshold | 15.1413 |
|
577 |
+
| euclidean_f1 | 0.6506 |
|
578 |
+
| euclidean_f1_threshold | 18.5094 |
|
579 |
+
| euclidean_precision | 0.5247 |
|
580 |
+
| euclidean_recall | 0.8559 |
|
581 |
+
| euclidean_ap | 0.6461 |
|
582 |
+
| max_accuracy | 0.6348 |
|
583 |
+
| max_accuracy_threshold | 653.7443 |
|
584 |
+
| max_f1 | 0.6506 |
|
585 |
+
| max_f1_threshold | 597.0732 |
|
586 |
+
| max_precision | 0.5324 |
|
587 |
+
| max_recall | 0.8559 |
|
588 |
+
| **max_ap** | **0.6462** |
|
589 |
+
|
590 |
+
<!--
|
591 |
+
## Bias, Risks and Limitations
|
592 |
+
|
593 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
594 |
+
-->
|
595 |
+
|
596 |
+
<!--
|
597 |
+
### Recommendations
|
598 |
+
|
599 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
600 |
+
-->
|
601 |
+
|
602 |
+
## Training Details
|
603 |
+
|
604 |
+
### Training Dataset
|
605 |
+
|
606 |
+
#### Unnamed Dataset
|
607 |
+
|
608 |
+
|
609 |
+
* Size: 32,500 training samples
|
610 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
611 |
+
* Approximate statistics based on the first 1000 samples:
|
612 |
+
| | sentence1 | sentence2 |
|
613 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
614 |
+
| type | string | string |
|
615 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 29.6 tokens</li><li>max: 369 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 58.01 tokens</li><li>max: 437 tokens</li></ul> |
|
616 |
+
* Samples:
|
617 |
+
| sentence1 | sentence2 |
|
618 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
619 |
+
| <code>The song ‘Fashion for His Love’ by Lady Gaga is a tribute to which late fashion designer?</code> | <code>Fashion Of His Love by Lady Gaga Songfacts Fashion Of His Love by Lady Gaga Songfacts Songfacts Gaga explained in a tweet that this track from her Born This Way Special Edition album is about the late Alexander McQueen. The fashion designer committed suicide by hanging on February 11, 2010 and Gaga was deeply affected by the tragic death of McQueen, who was a close personal friend. That same month, she performed at the 2010 Brit Awards wearing one of his couture creations and she also paid tribute to her late friend by setting the date on the prison security cameras in her Telephone video as the same day that McQueen's body was discovered in his London home.</code> |
|
620 |
+
| <code>e.	in solids the atoms are closely locked in position and can only vibrate, in liquids the atoms and molecules are more loosely connected and can collide with and move past one another, while in gases the atoms or molecules are free to move independently, colliding frequently.</code> | <code>Within a substance, atoms that collide frequently and move independently of one another are most likely in a gas</code> |
|
621 |
+
| <code>Helen Lederer is an English comedian .</code> | <code>Helen Lederer ( born 24 September 1954 ) is an English : //www.scotsman.com/news/now-or-never-1-1396369 comedian , writer and actress who emerged as part of the alternative comedy boom at the beginning of the 1980s .</code> |
|
622 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
623 |
+
```json
|
624 |
+
{'guide': SentenceTransformer(
|
625 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
626 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
627 |
+
(2): Normalize()
|
628 |
+
), 'temperature': 0.025}
|
629 |
+
```
|
630 |
+
|
631 |
+
### Evaluation Dataset
|
632 |
+
|
633 |
+
#### Unnamed Dataset
|
634 |
+
|
635 |
+
|
636 |
+
* Size: 1,664 evaluation samples
|
637 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
638 |
+
* Approximate statistics based on the first 1000 samples:
|
639 |
+
| | sentence1 | sentence2 |
|
640 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
641 |
+
| type | string | string |
|
642 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 29.01 tokens</li><li>max: 367 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 56.14 tokens</li><li>max: 389 tokens</li></ul> |
|
643 |
+
* Samples:
|
644 |
+
| sentence1 | sentence2 |
|
645 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
646 |
+
| <code>What planet did the voyager 1 spacecraft visit in 1980?</code> | <code>The Voyager 1 spacecraft visited Saturn in 1980. Voyager 2 followed in 1981. These probes sent back detailed pictures of Saturn, its rings, and some of its moons ( Figure below ). From the Voyager data, we learned what Saturn’s rings are made of. They are particles of water and ice with a little bit of dust. There are several gaps in the rings. These gaps were cleared out by moons within the rings. Gravity attracts dust and gas to the moon from the ring. This leaves a gap in the rings. Other gaps in the rings are caused by the competing forces of Saturn and its moons outside the rings.</code> |
|
647 |
+
| <code>Diffusion Diffusion is a process where atoms or molecules move from areas of high concentration to areas of low concentration.</code> | <code>Diffusion is the process in which a substance naturally moves from an area of higher to lower concentration.</code> |
|
648 |
+
| <code>Who had an 80s No 1 with Don't You Want Me?</code> | <code>The Human League - Don't You Want Me - YouTube The Human League - Don't You Want Me Want to watch this again later? Sign in to add this video to a playlist. Need to report the video? Sign in to report inappropriate content. Rating is available when the video has been rented. This feature is not available right now. Please try again later. Uploaded on Feb 27, 2009 Music video by The Human League performing Don't You Want Me (2003 Digital Remaster). Category</code> |
|
649 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
650 |
+
```json
|
651 |
+
{'guide': SentenceTransformer(
|
652 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
653 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
654 |
+
(2): Normalize()
|
655 |
+
), 'temperature': 0.025}
|
656 |
+
```
|
657 |
+
|
658 |
+
### Training Hyperparameters
|
659 |
+
#### Non-Default Hyperparameters
|
660 |
+
|
661 |
+
- `eval_strategy`: steps
|
662 |
+
- `per_device_train_batch_size`: 32
|
663 |
+
- `per_device_eval_batch_size`: 256
|
664 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
665 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
|
666 |
+
- `warmup_ratio`: 0.33
|
667 |
+
- `save_safetensors`: False
|
668 |
+
- `fp16`: True
|
669 |
+
- `push_to_hub`: True
|
670 |
+
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest3-step1-checkpoints-tmp
|
671 |
+
- `hub_strategy`: all_checkpoints
|
672 |
+
- `batch_sampler`: no_duplicates
|
673 |
+
|
674 |
+
#### All Hyperparameters
|
675 |
+
<details><summary>Click to expand</summary>
|
676 |
+
|
677 |
+
- `overwrite_output_dir`: False
|
678 |
+
- `do_predict`: False
|
679 |
+
- `eval_strategy`: steps
|
680 |
+
- `prediction_loss_only`: True
|
681 |
+
- `per_device_train_batch_size`: 32
|
682 |
+
- `per_device_eval_batch_size`: 256
|
683 |
+
- `per_gpu_train_batch_size`: None
|
684 |
+
- `per_gpu_eval_batch_size`: None
|
685 |
+
- `gradient_accumulation_steps`: 1
|
686 |
+
- `eval_accumulation_steps`: None
|
687 |
+
- `torch_empty_cache_steps`: None
|
688 |
+
- `learning_rate`: 5e-05
|
689 |
+
- `weight_decay`: 0.0
|
690 |
+
- `adam_beta1`: 0.9
|
691 |
+
- `adam_beta2`: 0.999
|
692 |
+
- `adam_epsilon`: 1e-08
|
693 |
+
- `max_grad_norm`: 1.0
|
694 |
+
- `num_train_epochs`: 3
|
695 |
+
- `max_steps`: -1
|
696 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
697 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
|
698 |
+
- `warmup_ratio`: 0.33
|
699 |
+
- `warmup_steps`: 0
|
700 |
+
- `log_level`: passive
|
701 |
+
- `log_level_replica`: warning
|
702 |
+
- `log_on_each_node`: True
|
703 |
+
- `logging_nan_inf_filter`: True
|
704 |
+
- `save_safetensors`: False
|
705 |
+
- `save_on_each_node`: False
|
706 |
+
- `save_only_model`: False
|
707 |
+
- `restore_callback_states_from_checkpoint`: False
|
708 |
+
- `no_cuda`: False
|
709 |
+
- `use_cpu`: False
|
710 |
+
- `use_mps_device`: False
|
711 |
+
- `seed`: 42
|
712 |
+
- `data_seed`: None
|
713 |
+
- `jit_mode_eval`: False
|
714 |
+
- `use_ipex`: False
|
715 |
+
- `bf16`: False
|
716 |
+
- `fp16`: True
|
717 |
+
- `fp16_opt_level`: O1
|
718 |
+
- `half_precision_backend`: auto
|
719 |
+
- `bf16_full_eval`: False
|
720 |
+
- `fp16_full_eval`: False
|
721 |
+
- `tf32`: None
|
722 |
+
- `local_rank`: 0
|
723 |
+
- `ddp_backend`: None
|
724 |
+
- `tpu_num_cores`: None
|
725 |
+
- `tpu_metrics_debug`: False
|
726 |
+
- `debug`: []
|
727 |
+
- `dataloader_drop_last`: False
|
728 |
+
- `dataloader_num_workers`: 0
|
729 |
+
- `dataloader_prefetch_factor`: None
|
730 |
+
- `past_index`: -1
|
731 |
+
- `disable_tqdm`: False
|
732 |
+
- `remove_unused_columns`: True
|
733 |
+
- `label_names`: None
|
734 |
+
- `load_best_model_at_end`: False
|
735 |
+
- `ignore_data_skip`: False
|
736 |
+
- `fsdp`: []
|
737 |
+
- `fsdp_min_num_params`: 0
|
738 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
739 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
740 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
741 |
+
- `deepspeed`: None
|
742 |
+
- `label_smoothing_factor`: 0.0
|
743 |
+
- `optim`: adamw_torch
|
744 |
+
- `optim_args`: None
|
745 |
+
- `adafactor`: False
|
746 |
+
- `group_by_length`: False
|
747 |
+
- `length_column_name`: length
|
748 |
+
- `ddp_find_unused_parameters`: None
|
749 |
+
- `ddp_bucket_cap_mb`: None
|
750 |
+
- `ddp_broadcast_buffers`: False
|
751 |
+
- `dataloader_pin_memory`: True
|
752 |
+
- `dataloader_persistent_workers`: False
|
753 |
+
- `skip_memory_metrics`: True
|
754 |
+
- `use_legacy_prediction_loop`: False
|
755 |
+
- `push_to_hub`: True
|
756 |
+
- `resume_from_checkpoint`: None
|
757 |
+
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest3-step1-checkpoints-tmp
|
758 |
+
- `hub_strategy`: all_checkpoints
|
759 |
+
- `hub_private_repo`: False
|
760 |
+
- `hub_always_push`: False
|
761 |
+
- `gradient_checkpointing`: False
|
762 |
+
- `gradient_checkpointing_kwargs`: None
|
763 |
+
- `include_inputs_for_metrics`: False
|
764 |
+
- `eval_do_concat_batches`: True
|
765 |
+
- `fp16_backend`: auto
|
766 |
+
- `push_to_hub_model_id`: None
|
767 |
+
- `push_to_hub_organization`: None
|
768 |
+
- `mp_parameters`:
|
769 |
+
- `auto_find_batch_size`: False
|
770 |
+
- `full_determinism`: False
|
771 |
+
- `torchdynamo`: None
|
772 |
+
- `ray_scope`: last
|
773 |
+
- `ddp_timeout`: 1800
|
774 |
+
- `torch_compile`: False
|
775 |
+
- `torch_compile_backend`: None
|
776 |
+
- `torch_compile_mode`: None
|
777 |
+
- `dispatch_batches`: None
|
778 |
+
- `split_batches`: None
|
779 |
+
- `include_tokens_per_second`: False
|
780 |
+
- `include_num_input_tokens_seen`: False
|
781 |
+
- `neftune_noise_alpha`: None
|
782 |
+
- `optim_target_modules`: None
|
783 |
+
- `batch_eval_metrics`: False
|
784 |
+
- `eval_on_start`: False
|
785 |
+
- `eval_use_gather_object`: False
|
786 |
+
- `batch_sampler`: no_duplicates
|
787 |
+
- `multi_dataset_batch_sampler`: proportional
|
788 |
+
|
789 |
+
</details>
|
790 |
+
|
791 |
+
### Training Logs
|
792 |
+
<details><summary>Click to expand</summary>
|
793 |
+
|
794 |
+
| Epoch | Step | Training Loss | Validation Loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
|
795 |
+
|:------:|:----:|:-------------:|:---------------:|:------------------------:|:-----------------:|:---------------:|
|
796 |
+
| 0.0010 | 1 | 10.4072 | - | - | - | - |
|
797 |
+
| 0.0020 | 2 | 11.0865 | - | - | - | - |
|
798 |
+
| 0.0030 | 3 | 9.5114 | - | - | - | - |
|
799 |
+
| 0.0039 | 4 | 9.9584 | - | - | - | - |
|
800 |
+
| 0.0049 | 5 | 10.068 | - | - | - | - |
|
801 |
+
| 0.0059 | 6 | 11.0224 | - | - | - | - |
|
802 |
+
| 0.0069 | 7 | 9.7703 | - | - | - | - |
|
803 |
+
| 0.0079 | 8 | 10.5005 | - | - | - | - |
|
804 |
+
| 0.0089 | 9 | 10.1987 | - | - | - | - |
|
805 |
+
| 0.0098 | 10 | 10.0277 | - | - | - | - |
|
806 |
+
| 0.0108 | 11 | 10.6965 | - | - | - | - |
|
807 |
+
| 0.0118 | 12 | 10.0609 | - | - | - | - |
|
808 |
+
| 0.0128 | 13 | 11.6214 | - | - | - | - |
|
809 |
+
| 0.0138 | 14 | 9.4053 | - | - | - | - |
|
810 |
+
| 0.0148 | 15 | 10.4014 | - | - | - | - |
|
811 |
+
| 0.0157 | 16 | 10.4119 | - | - | - | - |
|
812 |
+
| 0.0167 | 17 | 9.4658 | - | - | - | - |
|
813 |
+
| 0.0177 | 18 | 9.2169 | - | - | - | - |
|
814 |
+
| 0.0187 | 19 | 11.2337 | - | - | - | - |
|
815 |
+
| 0.0197 | 20 | 11.0572 | - | - | - | - |
|
816 |
+
| 0.0207 | 21 | 11.0452 | - | - | - | - |
|
817 |
+
| 0.0217 | 22 | 10.31 | - | - | - | - |
|
818 |
+
| 0.0226 | 23 | 9.1395 | - | - | - | - |
|
819 |
+
| 0.0236 | 24 | 8.4201 | - | - | - | - |
|
820 |
+
| 0.0246 | 25 | 8.6036 | - | - | - | - |
|
821 |
+
| 0.0256 | 26 | 11.7579 | - | - | - | - |
|
822 |
+
| 0.0266 | 27 | 10.1307 | - | - | - | - |
|
823 |
+
| 0.0276 | 28 | 9.2915 | - | - | - | - |
|
824 |
+
| 0.0285 | 29 | 9.0208 | - | - | - | - |
|
825 |
+
| 0.0295 | 30 | 8.6867 | - | - | - | - |
|
826 |
+
| 0.0305 | 31 | 8.0925 | - | - | - | - |
|
827 |
+
| 0.0315 | 32 | 8.6617 | - | - | - | - |
|
828 |
+
| 0.0325 | 33 | 8.3374 | - | - | - | - |
|
829 |
+
| 0.0335 | 34 | 7.8566 | - | - | - | - |
|
830 |
+
| 0.0344 | 35 | 9.0698 | - | - | - | - |
|
831 |
+
| 0.0354 | 36 | 7.7727 | - | - | - | - |
|
832 |
+
| 0.0364 | 37 | 7.6128 | - | - | - | - |
|
833 |
+
| 0.0374 | 38 | 7.8762 | - | - | - | - |
|
834 |
+
| 0.0384 | 39 | 7.5191 | - | - | - | - |
|
835 |
+
| 0.0394 | 40 | 7.5638 | - | - | - | - |
|
836 |
+
| 0.0404 | 41 | 7.1878 | - | - | - | - |
|
837 |
+
| 0.0413 | 42 | 6.8878 | - | - | - | - |
|
838 |
+
| 0.0423 | 43 | 7.5775 | - | - | - | - |
|
839 |
+
| 0.0433 | 44 | 7.1076 | - | - | - | - |
|
840 |
+
| 0.0443 | 45 | 6.5589 | - | - | - | - |
|
841 |
+
| 0.0453 | 46 | 7.4456 | - | - | - | - |
|
842 |
+
| 0.0463 | 47 | 6.8233 | - | - | - | - |
|
843 |
+
| 0.0472 | 48 | 6.7633 | - | - | - | - |
|
844 |
+
| 0.0482 | 49 | 6.6024 | - | - | - | - |
|
845 |
+
| 0.0492 | 50 | 6.2778 | - | - | - | - |
|
846 |
+
| 0.0502 | 51 | 6.1026 | - | - | - | - |
|
847 |
+
| 0.0512 | 52 | 6.632 | - | - | - | - |
|
848 |
+
| 0.0522 | 53 | 6.6962 | - | - | - | - |
|
849 |
+
| 0.0531 | 54 | 5.8514 | - | - | - | - |
|
850 |
+
| 0.0541 | 55 | 5.9951 | - | - | - | - |
|
851 |
+
| 0.0551 | 56 | 5.4554 | - | - | - | - |
|
852 |
+
| 0.0561 | 57 | 6.0147 | - | - | - | - |
|
853 |
+
| 0.0571 | 58 | 5.215 | - | - | - | - |
|
854 |
+
| 0.0581 | 59 | 6.4525 | - | - | - | - |
|
855 |
+
| 0.0591 | 60 | 5.4048 | - | - | - | - |
|
856 |
+
| 0.0600 | 61 | 5.0424 | - | - | - | - |
|
857 |
+
| 0.0610 | 62 | 6.2646 | - | - | - | - |
|
858 |
+
| 0.0620 | 63 | 5.0847 | - | - | - | - |
|
859 |
+
| 0.0630 | 64 | 5.4415 | - | - | - | - |
|
860 |
+
| 0.0640 | 65 | 5.2469 | - | - | - | - |
|
861 |
+
| 0.0650 | 66 | 5.1378 | - | - | - | - |
|
862 |
+
| 0.0659 | 67 | 5.1636 | - | - | - | - |
|
863 |
+
| 0.0669 | 68 | 5.5596 | - | - | - | - |
|
864 |
+
| 0.0679 | 69 | 4.9508 | - | - | - | - |
|
865 |
+
| 0.0689 | 70 | 5.2355 | - | - | - | - |
|
866 |
+
| 0.0699 | 71 | 4.7359 | - | - | - | - |
|
867 |
+
| 0.0709 | 72 | 4.8947 | - | - | - | - |
|
868 |
+
| 0.0719 | 73 | 4.6269 | - | - | - | - |
|
869 |
+
| 0.0728 | 74 | 4.6072 | - | - | - | - |
|
870 |
+
| 0.0738 | 75 | 4.9125 | - | - | - | - |
|
871 |
+
| 0.0748 | 76 | 4.5856 | - | - | - | - |
|
872 |
+
| 0.0758 | 77 | 4.7879 | - | - | - | - |
|
873 |
+
| 0.0768 | 78 | 4.5348 | - | - | - | - |
|
874 |
+
| 0.0778 | 79 | 4.3554 | - | - | - | - |
|
875 |
+
| 0.0787 | 80 | 4.2984 | - | - | - | - |
|
876 |
+
| 0.0797 | 81 | 4.5505 | - | - | - | - |
|
877 |
+
| 0.0807 | 82 | 4.5325 | - | - | - | - |
|
878 |
+
| 0.0817 | 83 | 4.2725 | - | - | - | - |
|
879 |
+
| 0.0827 | 84 | 4.3054 | - | - | - | - |
|
880 |
+
| 0.0837 | 85 | 4.5536 | - | - | - | - |
|
881 |
+
| 0.0846 | 86 | 4.0265 | - | - | - | - |
|
882 |
+
| 0.0856 | 87 | 4.7453 | - | - | - | - |
|
883 |
+
| 0.0866 | 88 | 4.071 | - | - | - | - |
|
884 |
+
| 0.0876 | 89 | 4.1582 | - | - | - | - |
|
885 |
+
| 0.0886 | 90 | 4.1131 | - | - | - | - |
|
886 |
+
| 0.0896 | 91 | 3.6582 | - | - | - | - |
|
887 |
+
| 0.0906 | 92 | 4.143 | - | - | - | - |
|
888 |
+
| 0.0915 | 93 | 4.2273 | - | - | - | - |
|
889 |
+
| 0.0925 | 94 | 3.9321 | - | - | - | - |
|
890 |
+
| 0.0935 | 95 | 4.2061 | - | - | - | - |
|
891 |
+
| 0.0945 | 96 | 4.1042 | - | - | - | - |
|
892 |
+
| 0.0955 | 97 | 3.9513 | - | - | - | - |
|
893 |
+
| 0.0965 | 98 | 3.8627 | - | - | - | - |
|
894 |
+
| 0.0974 | 99 | 4.3613 | - | - | - | - |
|
895 |
+
| 0.0984 | 100 | 3.8513 | - | - | - | - |
|
896 |
+
| 0.0994 | 101 | 3.5866 | - | - | - | - |
|
897 |
+
| 0.1004 | 102 | 3.5239 | - | - | - | - |
|
898 |
+
| 0.1014 | 103 | 3.5921 | - | - | - | - |
|
899 |
+
| 0.1024 | 104 | 3.5962 | - | - | - | - |
|
900 |
+
| 0.1033 | 105 | 4.0001 | - | - | - | - |
|
901 |
+
| 0.1043 | 106 | 4.1374 | - | - | - | - |
|
902 |
+
| 0.1053 | 107 | 3.9049 | - | - | - | - |
|
903 |
+
| 0.1063 | 108 | 3.2511 | - | - | - | - |
|
904 |
+
| 0.1073 | 109 | 3.2479 | - | - | - | - |
|
905 |
+
| 0.1083 | 110 | 3.6414 | - | - | - | - |
|
906 |
+
| 0.1093 | 111 | 3.6429 | - | - | - | - |
|
907 |
+
| 0.1102 | 112 | 3.423 | - | - | - | - |
|
908 |
+
| 0.1112 | 113 | 3.4967 | - | - | - | - |
|
909 |
+
| 0.1122 | 114 | 3.7649 | - | - | - | - |
|
910 |
+
| 0.1132 | 115 | 3.2845 | - | - | - | - |
|
911 |
+
| 0.1142 | 116 | 3.356 | - | - | - | - |
|
912 |
+
| 0.1152 | 117 | 3.2086 | - | - | - | - |
|
913 |
+
| 0.1161 | 118 | 3.5561 | - | - | - | - |
|
914 |
+
| 0.1171 | 119 | 3.7353 | - | - | - | - |
|
915 |
+
| 0.1181 | 120 | 3.403 | - | - | - | - |
|
916 |
+
| 0.1191 | 121 | 3.1009 | - | - | - | - |
|
917 |
+
| 0.1201 | 122 | 3.2139 | - | - | - | - |
|
918 |
+
| 0.1211 | 123 | 3.3339 | - | - | - | - |
|
919 |
+
| 0.1220 | 124 | 2.9464 | - | - | - | - |
|
920 |
+
| 0.1230 | 125 | 3.3366 | - | - | - | - |
|
921 |
+
| 0.1240 | 126 | 3.0618 | - | - | - | - |
|
922 |
+
| 0.125 | 127 | 3.0092 | - | - | - | - |
|
923 |
+
| 0.1260 | 128 | 2.7152 | - | - | - | - |
|
924 |
+
| 0.1270 | 129 | 2.9423 | - | - | - | - |
|
925 |
+
| 0.1280 | 130 | 2.6569 | - | - | - | - |
|
926 |
+
| 0.1289 | 131 | 2.8469 | - | - | - | - |
|
927 |
+
| 0.1299 | 132 | 2.9089 | - | - | - | - |
|
928 |
+
| 0.1309 | 133 | 2.5809 | - | - | - | - |
|
929 |
+
| 0.1319 | 134 | 2.6987 | - | - | - | - |
|
930 |
+
| 0.1329 | 135 | 3.2518 | - | - | - | - |
|
931 |
+
| 0.1339 | 136 | 2.9145 | - | - | - | - |
|
932 |
+
| 0.1348 | 137 | 2.4809 | - | - | - | - |
|
933 |
+
| 0.1358 | 138 | 2.8264 | - | - | - | - |
|
934 |
+
| 0.1368 | 139 | 2.5724 | - | - | - | - |
|
935 |
+
| 0.1378 | 140 | 2.6949 | - | - | - | - |
|
936 |
+
| 0.1388 | 141 | 2.6925 | - | - | - | - |
|
937 |
+
| 0.1398 | 142 | 2.9311 | - | - | - | - |
|
938 |
+
| 0.1407 | 143 | 2.5667 | - | - | - | - |
|
939 |
+
| 0.1417 | 144 | 3.2471 | - | - | - | - |
|
940 |
+
| 0.1427 | 145 | 2.2441 | - | - | - | - |
|
941 |
+
| 0.1437 | 146 | 2.75 | - | - | - | - |
|
942 |
+
| 0.1447 | 147 | 2.9669 | - | - | - | - |
|
943 |
+
| 0.1457 | 148 | 2.736 | - | - | - | - |
|
944 |
+
| 0.1467 | 149 | 3.104 | - | - | - | - |
|
945 |
+
| 0.1476 | 150 | 2.2175 | - | - | - | - |
|
946 |
+
| 0.1486 | 151 | 2.7415 | - | - | - | - |
|
947 |
+
| 0.1496 | 152 | 1.8707 | - | - | - | - |
|
948 |
+
| 0.1506 | 153 | 2.5961 | 2.2653 | 0.3116 | 0.4265 | 0.6462 |
|
949 |
+
| 0.1516 | 154 | 3.1149 | - | - | - | - |
|
950 |
+
| 0.1526 | 155 | 2.2976 | - | - | - | - |
|
951 |
+
| 0.1535 | 156 | 2.4436 | - | - | - | - |
|
952 |
+
| 0.1545 | 157 | 2.8826 | - | - | - | - |
|
953 |
+
| 0.1555 | 158 | 2.3664 | - | - | - | - |
|
954 |
+
| 0.1565 | 159 | 2.2485 | - | - | - | - |
|
955 |
+
| 0.1575 | 160 | 2.5167 | - | - | - | - |
|
956 |
+
| 0.1585 | 161 | 1.7183 | - | - | - | - |
|
957 |
+
| 0.1594 | 162 | 2.1003 | - | - | - | - |
|
958 |
+
| 0.1604 | 163 | 2.5785 | - | - | - | - |
|
959 |
+
| 0.1614 | 164 | 2.8789 | - | - | - | - |
|
960 |
+
| 0.1624 | 165 | 2.3425 | - | - | - | - |
|
961 |
+
| 0.1634 | 166 | 2.0966 | - | - | - | - |
|
962 |
+
| 0.1644 | 167 | 2.1126 | - | - | - | - |
|
963 |
+
| 0.1654 | 168 | 2.1824 | - | - | - | - |
|
964 |
+
| 0.1663 | 169 | 2.2009 | - | - | - | - |
|
965 |
+
| 0.1673 | 170 | 2.3796 | - | - | - | - |
|
966 |
+
| 0.1683 | 171 | 2.3096 | - | - | - | - |
|
967 |
+
| 0.1693 | 172 | 2.7897 | - | - | - | - |
|
968 |
+
| 0.1703 | 173 | 2.2097 | - | - | - | - |
|
969 |
+
| 0.1713 | 174 | 1.7508 | - | - | - | - |
|
970 |
+
| 0.1722 | 175 | 2.353 | - | - | - | - |
|
971 |
+
| 0.1732 | 176 | 2.4276 | - | - | - | - |
|
972 |
+
| 0.1742 | 177 | 2.1016 | - | - | - | - |
|
973 |
+
| 0.1752 | 178 | 1.8461 | - | - | - | - |
|
974 |
+
| 0.1762 | 179 | 1.8104 | - | - | - | - |
|
975 |
+
| 0.1772 | 180 | 2.6023 | - | - | - | - |
|
976 |
+
| 0.1781 | 181 | 2.5261 | - | - | - | - |
|
977 |
+
| 0.1791 | 182 | 2.1053 | - | - | - | - |
|
978 |
+
| 0.1801 | 183 | 1.9712 | - | - | - | - |
|
979 |
+
| 0.1811 | 184 | 2.4693 | - | - | - | - |
|
980 |
+
| 0.1821 | 185 | 2.1119 | - | - | - | - |
|
981 |
+
| 0.1831 | 186 | 2.4797 | - | - | - | - |
|
982 |
+
| 0.1841 | 187 | 2.1587 | - | - | - | - |
|
983 |
+
| 0.1850 | 188 | 1.9578 | - | - | - | - |
|
984 |
+
| 0.1860 | 189 | 2.1368 | - | - | - | - |
|
985 |
+
| 0.1870 | 190 | 2.4212 | - | - | - | - |
|
986 |
+
| 0.1880 | 191 | 1.9591 | - | - | - | - |
|
987 |
+
| 0.1890 | 192 | 1.5816 | - | - | - | - |
|
988 |
+
| 0.1900 | 193 | 1.4029 | - | - | - | - |
|
989 |
+
| 0.1909 | 194 | 1.9385 | - | - | - | - |
|
990 |
+
| 0.1919 | 195 | 1.5596 | - | - | - | - |
|
991 |
+
| 0.1929 | 196 | 1.6663 | - | - | - | - |
|
992 |
+
| 0.1939 | 197 | 2.0026 | - | - | - | - |
|
993 |
+
| 0.1949 | 198 | 2.0046 | - | - | - | - |
|
994 |
+
| 0.1959 | 199 | 1.5016 | - | - | - | - |
|
995 |
+
| 0.1969 | 200 | 2.184 | - | - | - | - |
|
996 |
+
| 0.1978 | 201 | 2.3442 | - | - | - | - |
|
997 |
+
| 0.1988 | 202 | 2.6981 | - | - | - | - |
|
998 |
+
| 0.1998 | 203 | 2.5481 | - | - | - | - |
|
999 |
+
| 0.2008 | 204 | 2.9798 | - | - | - | - |
|
1000 |
+
| 0.2018 | 205 | 2.287 | - | - | - | - |
|
1001 |
+
| 0.2028 | 206 | 1.9393 | - | - | - | - |
|
1002 |
+
| 0.2037 | 207 | 2.892 | - | - | - | - |
|
1003 |
+
| 0.2047 | 208 | 2.26 | - | - | - | - |
|
1004 |
+
| 0.2057 | 209 | 2.5911 | - | - | - | - |
|
1005 |
+
| 0.2067 | 210 | 2.1239 | - | - | - | - |
|
1006 |
+
| 0.2077 | 211 | 2.0683 | - | - | - | - |
|
1007 |
+
| 0.2087 | 212 | 1.768 | - | - | - | - |
|
1008 |
+
| 0.2096 | 213 | 2.5468 | - | - | - | - |
|
1009 |
+
| 0.2106 | 214 | 1.8956 | - | - | - | - |
|
1010 |
+
| 0.2116 | 215 | 2.044 | - | - | - | - |
|
1011 |
+
| 0.2126 | 216 | 1.5721 | - | - | - | - |
|
1012 |
+
| 0.2136 | 217 | 1.6278 | - | - | - | - |
|
1013 |
+
| 0.2146 | 218 | 1.7754 | - | - | - | - |
|
1014 |
+
| 0.2156 | 219 | 1.8594 | - | - | - | - |
|
1015 |
+
| 0.2165 | 220 | 1.8309 | - | - | - | - |
|
1016 |
+
| 0.2175 | 221 | 2.0619 | - | - | - | - |
|
1017 |
+
| 0.2185 | 222 | 2.3335 | - | - | - | - |
|
1018 |
+
| 0.2195 | 223 | 2.023 | - | - | - | - |
|
1019 |
+
| 0.2205 | 224 | 2.1975 | - | - | - | - |
|
1020 |
+
| 0.2215 | 225 | 1.9228 | - | - | - | - |
|
1021 |
+
| 0.2224 | 226 | 2.3565 | - | - | - | - |
|
1022 |
+
| 0.2234 | 227 | 1.896 | - | - | - | - |
|
1023 |
+
| 0.2244 | 228 | 2.0912 | - | - | - | - |
|
1024 |
+
| 0.2254 | 229 | 2.7703 | - | - | - | - |
|
1025 |
+
| 0.2264 | 230 | 1.6988 | - | - | - | - |
|
1026 |
+
| 0.2274 | 231 | 2.0406 | - | - | - | - |
|
1027 |
+
| 0.2283 | 232 | 1.9288 | - | - | - | - |
|
1028 |
+
| 0.2293 | 233 | 2.0457 | - | - | - | - |
|
1029 |
+
| 0.2303 | 234 | 1.7061 | - | - | - | - |
|
1030 |
+
| 0.2313 | 235 | 1.6244 | - | - | - | - |
|
1031 |
+
| 0.2323 | 236 | 2.0241 | - | - | - | - |
|
1032 |
+
| 0.2333 | 237 | 1.567 | - | - | - | - |
|
1033 |
+
| 0.2343 | 238 | 1.8084 | - | - | - | - |
|
1034 |
+
| 0.2352 | 239 | 2.4363 | - | - | - | - |
|
1035 |
+
| 0.2362 | 240 | 1.7532 | - | - | - | - |
|
1036 |
+
| 0.2372 | 241 | 2.0797 | - | - | - | - |
|
1037 |
+
| 0.2382 | 242 | 1.9562 | - | - | - | - |
|
1038 |
+
| 0.2392 | 243 | 1.6751 | - | - | - | - |
|
1039 |
+
| 0.2402 | 244 | 2.0265 | - | - | - | - |
|
1040 |
+
| 0.2411 | 245 | 1.6065 | - | - | - | - |
|
1041 |
+
| 0.2421 | 246 | 1.7439 | - | - | - | - |
|
1042 |
+
| 0.2431 | 247 | 2.0237 | - | - | - | - |
|
1043 |
+
| 0.2441 | 248 | 1.6128 | - | - | - | - |
|
1044 |
+
| 0.2451 | 249 | 1.6581 | - | - | - | - |
|
1045 |
+
| 0.2461 | 250 | 2.1538 | - | - | - | - |
|
1046 |
+
| 0.2470 | 251 | 2.049 | - | - | - | - |
|
1047 |
+
| 0.2480 | 252 | 1.2573 | - | - | - | - |
|
1048 |
+
| 0.2490 | 253 | 1.5619 | - | - | - | - |
|
1049 |
+
| 0.25 | 254 | 1.2611 | - | - | - | - |
|
1050 |
+
| 0.2510 | 255 | 1.3443 | - | - | - | - |
|
1051 |
+
| 0.2520 | 256 | 1.3436 | - | - | - | - |
|
1052 |
+
| 0.2530 | 257 | 2.8117 | - | - | - | - |
|
1053 |
+
| 0.2539 | 258 | 1.7563 | - | - | - | - |
|
1054 |
+
| 0.2549 | 259 | 1.3148 | - | - | - | - |
|
1055 |
+
| 0.2559 | 260 | 2.0278 | - | - | - | - |
|
1056 |
+
| 0.2569 | 261 | 1.2403 | - | - | - | - |
|
1057 |
+
| 0.2579 | 262 | 1.588 | - | - | - | - |
|
1058 |
+
| 0.2589 | 263 | 2.0071 | - | - | - | - |
|
1059 |
+
| 0.2598 | 264 | 1.5312 | - | - | - | - |
|
1060 |
+
| 0.2608 | 265 | 1.8641 | - | - | - | - |
|
1061 |
+
| 0.2618 | 266 | 1.2933 | - | - | - | - |
|
1062 |
+
| 0.2628 | 267 | 1.6262 | - | - | - | - |
|
1063 |
+
| 0.2638 | 268 | 1.721 | - | - | - | - |
|
1064 |
+
| 0.2648 | 269 | 1.4713 | - | - | - | - |
|
1065 |
+
| 0.2657 | 270 | 1.4625 | - | - | - | - |
|
1066 |
+
| 0.2667 | 271 | 1.7254 | - | - | - | - |
|
1067 |
+
| 0.2677 | 272 | 1.5108 | - | - | - | - |
|
1068 |
+
| 0.2687 | 273 | 2.1126 | - | - | - | - |
|
1069 |
+
| 0.2697 | 274 | 1.3967 | - | - | - | - |
|
1070 |
+
| 0.2707 | 275 | 1.7067 | - | - | - | - |
|
1071 |
+
| 0.2717 | 276 | 1.4847 | - | - | - | - |
|
1072 |
+
| 0.2726 | 277 | 1.6515 | - | - | - | - |
|
1073 |
+
| 0.2736 | 278 | 0.9367 | - | - | - | - |
|
1074 |
+
| 0.2746 | 279 | 2.0267 | - | - | - | - |
|
1075 |
+
| 0.2756 | 280 | 1.5023 | - | - | - | - |
|
1076 |
+
| 0.2766 | 281 | 1.1248 | - | - | - | - |
|
1077 |
+
| 0.2776 | 282 | 1.6224 | - | - | - | - |
|
1078 |
+
| 0.2785 | 283 | 1.7969 | - | - | - | - |
|
1079 |
+
| 0.2795 | 284 | 2.2498 | - | - | - | - |
|
1080 |
+
| 0.2805 | 285 | 1.7477 | - | - | - | - |
|
1081 |
+
| 0.2815 | 286 | 1.6261 | - | - | - | - |
|
1082 |
+
| 0.2825 | 287 | 2.0911 | - | - | - | - |
|
1083 |
+
| 0.2835 | 288 | 1.9519 | - | - | - | - |
|
1084 |
+
| 0.2844 | 289 | 1.3132 | - | - | - | - |
|
1085 |
+
| 0.2854 | 290 | 2.3292 | - | - | - | - |
|
1086 |
+
| 0.2864 | 291 | 1.3781 | - | - | - | - |
|
1087 |
+
| 0.2874 | 292 | 1.5753 | - | - | - | - |
|
1088 |
+
| 0.2884 | 293 | 1.4158 | - | - | - | - |
|
1089 |
+
| 0.2894 | 294 | 2.1661 | - | - | - | - |
|
1090 |
+
| 0.2904 | 295 | 1.4928 | - | - | - | - |
|
1091 |
+
| 0.2913 | 296 | 2.2825 | - | - | - | - |
|
1092 |
+
| 0.2923 | 297 | 1.7261 | - | - | - | - |
|
1093 |
+
| 0.2933 | 298 | 1.8635 | - | - | - | - |
|
1094 |
+
| 0.2943 | 299 | 0.974 | - | - | - | - |
|
1095 |
+
| 0.2953 | 300 | 1.53 | - | - | - | - |
|
1096 |
+
| 0.2963 | 301 | 1.5985 | - | - | - | - |
|
1097 |
+
| 0.2972 | 302 | 1.2169 | - | - | - | - |
|
1098 |
+
| 0.2982 | 303 | 1.771 | - | - | - | - |
|
1099 |
+
| 0.2992 | 304 | 1.4506 | - | - | - | - |
|
1100 |
+
| 0.3002 | 305 | 1.9496 | - | - | - | - |
|
1101 |
+
|
1102 |
+
</details>
|
1103 |
+
|
1104 |
+
### Framework Versions
|
1105 |
+
- Python: 3.10.12
|
1106 |
+
- Sentence Transformers: 3.2.1
|
1107 |
+
- Transformers: 4.44.2
|
1108 |
+
- PyTorch: 2.5.0+cu121
|
1109 |
+
- Accelerate: 0.34.2
|
1110 |
+
- Datasets: 3.0.2
|
1111 |
+
- Tokenizers: 0.19.1
|
1112 |
+
|
1113 |
+
## Citation
|
1114 |
+
|
1115 |
+
### BibTeX
|
1116 |
+
|
1117 |
+
#### Sentence Transformers
|
1118 |
+
```bibtex
|
1119 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1120 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1121 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1122 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1123 |
+
month = "11",
|
1124 |
+
year = "2019",
|
1125 |
+
publisher = "Association for Computational Linguistics",
|
1126 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1127 |
+
}
|
1128 |
+
```
|
1129 |
+
|
1130 |
+
#### GISTEmbedLoss
|
1131 |
+
```bibtex
|
1132 |
+
@misc{solatorio2024gistembed,
|
1133 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
1134 |
+
author={Aivin V. Solatorio},
|
1135 |
+
year={2024},
|
1136 |
+
eprint={2402.16829},
|
1137 |
+
archivePrefix={arXiv},
|
1138 |
+
primaryClass={cs.LG}
|
1139 |
+
}
|
1140 |
+
```
|
1141 |
+
|
1142 |
+
<!--
|
1143 |
+
## Glossary
|
1144 |
+
|
1145 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1146 |
+
-->
|
1147 |
+
|
1148 |
+
<!--
|
1149 |
+
## Model Card Authors
|
1150 |
+
|
1151 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1152 |
+
-->
|
1153 |
+
|
1154 |
+
<!--
|
1155 |
+
## Model Card Contact
|
1156 |
+
|
1157 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1158 |
+
-->
|
checkpoint-305/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
checkpoint-305/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-small",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.44.2",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
checkpoint-305/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.5.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-305/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_AdvancedWeightedPooling",
|
12 |
+
"type": "__main__.AdvancedWeightedPooling"
|
13 |
+
}
|
14 |
+
]
|
checkpoint-305/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4216ea492e90da5d326e24f088ae9ed8f53c5c1cd07159e79ede7f19608ce70
|
3 |
+
size 151305210
|
checkpoint-305/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:094972df8cec1361c68660c6023958f3a6d599dd4aa6eb3d97fcf636926c7a61
|
3 |
+
size 565251810
|
checkpoint-305/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c0d2348e42208a7e9d06f1d7141b6a824eaed568a8c8d1acd23d0ef3cb67228
|
3 |
+
size 14180
|
checkpoint-305/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d921808ffb17e7f3747de1868df7274036d36213181d5b4bcf1a8abc48c88b9
|
3 |
+
size 1256
|
checkpoint-305/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-305/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
checkpoint-305/spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
checkpoint-305/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-305/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|
checkpoint-305/trainer_state.json
ADDED
@@ -0,0 +1,2257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.3001968503937008,
|
5 |
+
"eval_steps": 153,
|
6 |
+
"global_step": 305,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.000984251968503937,
|
13 |
+
"grad_norm": NaN,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 10.4072,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.001968503937007874,
|
20 |
+
"grad_norm": NaN,
|
21 |
+
"learning_rate": 0.0,
|
22 |
+
"loss": 11.0865,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.002952755905511811,
|
27 |
+
"grad_norm": 60.69786071777344,
|
28 |
+
"learning_rate": 9.940357852882705e-10,
|
29 |
+
"loss": 9.5114,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.003937007874015748,
|
34 |
+
"grad_norm": 59.147647857666016,
|
35 |
+
"learning_rate": 1.988071570576541e-09,
|
36 |
+
"loss": 9.9584,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.004921259842519685,
|
41 |
+
"grad_norm": NaN,
|
42 |
+
"learning_rate": 1.988071570576541e-09,
|
43 |
+
"loss": 10.068,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.005905511811023622,
|
48 |
+
"grad_norm": 65.82320404052734,
|
49 |
+
"learning_rate": 2.9821073558648116e-09,
|
50 |
+
"loss": 11.0224,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.006889763779527559,
|
55 |
+
"grad_norm": 59.096107482910156,
|
56 |
+
"learning_rate": 3.976143141153082e-09,
|
57 |
+
"loss": 9.7703,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.007874015748031496,
|
62 |
+
"grad_norm": 61.43330764770508,
|
63 |
+
"learning_rate": 4.970178926441353e-09,
|
64 |
+
"loss": 10.5005,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.008858267716535433,
|
69 |
+
"grad_norm": 61.25212860107422,
|
70 |
+
"learning_rate": 5.964214711729623e-09,
|
71 |
+
"loss": 10.1987,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.00984251968503937,
|
76 |
+
"grad_norm": 61.6600341796875,
|
77 |
+
"learning_rate": 6.9582504970178946e-09,
|
78 |
+
"loss": 10.0277,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.010826771653543307,
|
83 |
+
"grad_norm": 61.71075439453125,
|
84 |
+
"learning_rate": 7.952286282306164e-09,
|
85 |
+
"loss": 10.6965,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.011811023622047244,
|
90 |
+
"grad_norm": 59.34035873413086,
|
91 |
+
"learning_rate": 8.946322067594435e-09,
|
92 |
+
"loss": 10.0609,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.012795275590551181,
|
97 |
+
"grad_norm": 64.14221954345703,
|
98 |
+
"learning_rate": 9.940357852882705e-09,
|
99 |
+
"loss": 11.6214,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.013779527559055118,
|
104 |
+
"grad_norm": 57.682823181152344,
|
105 |
+
"learning_rate": 1.0934393638170978e-08,
|
106 |
+
"loss": 9.4053,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.014763779527559055,
|
111 |
+
"grad_norm": 62.256858825683594,
|
112 |
+
"learning_rate": 1.1928429423459246e-08,
|
113 |
+
"loss": 10.4014,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.015748031496062992,
|
118 |
+
"grad_norm": 64.56417083740234,
|
119 |
+
"learning_rate": 1.2922465208747517e-08,
|
120 |
+
"loss": 10.4119,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.01673228346456693,
|
125 |
+
"grad_norm": 56.612098693847656,
|
126 |
+
"learning_rate": 1.3916500994035789e-08,
|
127 |
+
"loss": 9.4658,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.017716535433070866,
|
132 |
+
"grad_norm": 60.02314758300781,
|
133 |
+
"learning_rate": 1.4910536779324056e-08,
|
134 |
+
"loss": 9.2169,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.018700787401574805,
|
139 |
+
"grad_norm": 66.38670349121094,
|
140 |
+
"learning_rate": 1.590457256461233e-08,
|
141 |
+
"loss": 11.2337,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.01968503937007874,
|
146 |
+
"grad_norm": 64.9875259399414,
|
147 |
+
"learning_rate": 1.68986083499006e-08,
|
148 |
+
"loss": 11.0572,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.02066929133858268,
|
153 |
+
"grad_norm": 59.36448287963867,
|
154 |
+
"learning_rate": 1.789264413518887e-08,
|
155 |
+
"loss": 11.0452,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.021653543307086614,
|
160 |
+
"grad_norm": 59.18537902832031,
|
161 |
+
"learning_rate": 1.888667992047714e-08,
|
162 |
+
"loss": 10.31,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.022637795275590553,
|
167 |
+
"grad_norm": 54.053524017333984,
|
168 |
+
"learning_rate": 1.988071570576541e-08,
|
169 |
+
"loss": 9.1395,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.023622047244094488,
|
174 |
+
"grad_norm": 49.979618072509766,
|
175 |
+
"learning_rate": 2.087475149105368e-08,
|
176 |
+
"loss": 8.4201,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.024606299212598427,
|
181 |
+
"grad_norm": 51.654518127441406,
|
182 |
+
"learning_rate": 2.1868787276341955e-08,
|
183 |
+
"loss": 8.6036,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.025590551181102362,
|
188 |
+
"grad_norm": 63.55083465576172,
|
189 |
+
"learning_rate": 2.2862823061630224e-08,
|
190 |
+
"loss": 11.7579,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.0265748031496063,
|
195 |
+
"grad_norm": 59.30263137817383,
|
196 |
+
"learning_rate": 2.3856858846918493e-08,
|
197 |
+
"loss": 10.1307,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.027559055118110236,
|
202 |
+
"grad_norm": 50.75270462036133,
|
203 |
+
"learning_rate": 2.4850894632206765e-08,
|
204 |
+
"loss": 9.2915,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.028543307086614175,
|
209 |
+
"grad_norm": 51.7747917175293,
|
210 |
+
"learning_rate": 2.5844930417495034e-08,
|
211 |
+
"loss": 9.0208,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.02952755905511811,
|
216 |
+
"grad_norm": 46.81666564941406,
|
217 |
+
"learning_rate": 2.6838966202783303e-08,
|
218 |
+
"loss": 8.6867,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03051181102362205,
|
223 |
+
"grad_norm": 44.82905578613281,
|
224 |
+
"learning_rate": 2.7833001988071578e-08,
|
225 |
+
"loss": 8.0925,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.031496062992125984,
|
230 |
+
"grad_norm": 47.148406982421875,
|
231 |
+
"learning_rate": 2.8827037773359847e-08,
|
232 |
+
"loss": 8.6617,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.03248031496062992,
|
237 |
+
"grad_norm": 47.153053283691406,
|
238 |
+
"learning_rate": 2.982107355864811e-08,
|
239 |
+
"loss": 8.3374,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.03346456692913386,
|
244 |
+
"grad_norm": 45.4912223815918,
|
245 |
+
"learning_rate": 3.081510934393639e-08,
|
246 |
+
"loss": 7.8566,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.0344488188976378,
|
251 |
+
"grad_norm": 51.92588806152344,
|
252 |
+
"learning_rate": 3.180914512922466e-08,
|
253 |
+
"loss": 9.0698,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.03543307086614173,
|
258 |
+
"grad_norm": 43.18679428100586,
|
259 |
+
"learning_rate": 3.280318091451293e-08,
|
260 |
+
"loss": 7.7727,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.03641732283464567,
|
265 |
+
"grad_norm": 43.12812805175781,
|
266 |
+
"learning_rate": 3.37972166998012e-08,
|
267 |
+
"loss": 7.6128,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.03740157480314961,
|
272 |
+
"grad_norm": 44.7684211730957,
|
273 |
+
"learning_rate": 3.479125248508947e-08,
|
274 |
+
"loss": 7.8762,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.038385826771653545,
|
279 |
+
"grad_norm": 36.34556198120117,
|
280 |
+
"learning_rate": 3.578528827037774e-08,
|
281 |
+
"loss": 7.5191,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.03937007874015748,
|
286 |
+
"grad_norm": 39.9330940246582,
|
287 |
+
"learning_rate": 3.6779324055666005e-08,
|
288 |
+
"loss": 7.5638,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.040354330708661415,
|
293 |
+
"grad_norm": 39.49993133544922,
|
294 |
+
"learning_rate": 3.777335984095428e-08,
|
295 |
+
"loss": 7.1878,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.04133858267716536,
|
300 |
+
"grad_norm": 34.661251068115234,
|
301 |
+
"learning_rate": 3.8767395626242556e-08,
|
302 |
+
"loss": 6.8878,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.04232283464566929,
|
307 |
+
"grad_norm": 40.655540466308594,
|
308 |
+
"learning_rate": 3.976143141153082e-08,
|
309 |
+
"loss": 7.5775,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.04330708661417323,
|
314 |
+
"grad_norm": 36.12670135498047,
|
315 |
+
"learning_rate": 4.0755467196819094e-08,
|
316 |
+
"loss": 7.1076,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.04429133858267716,
|
321 |
+
"grad_norm": 34.178226470947266,
|
322 |
+
"learning_rate": 4.174950298210736e-08,
|
323 |
+
"loss": 6.5589,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.045275590551181105,
|
328 |
+
"grad_norm": 36.6577033996582,
|
329 |
+
"learning_rate": 4.274353876739563e-08,
|
330 |
+
"loss": 7.4456,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.04625984251968504,
|
335 |
+
"grad_norm": 32.548709869384766,
|
336 |
+
"learning_rate": 4.373757455268391e-08,
|
337 |
+
"loss": 6.8233,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.047244094488188976,
|
342 |
+
"grad_norm": 34.000553131103516,
|
343 |
+
"learning_rate": 4.4731610337972176e-08,
|
344 |
+
"loss": 6.7633,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.04822834645669291,
|
349 |
+
"grad_norm": 32.247859954833984,
|
350 |
+
"learning_rate": 4.572564612326045e-08,
|
351 |
+
"loss": 6.6024,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.04921259842519685,
|
356 |
+
"grad_norm": 28.947786331176758,
|
357 |
+
"learning_rate": 4.6719681908548713e-08,
|
358 |
+
"loss": 6.2778,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.05019685039370079,
|
363 |
+
"grad_norm": 30.279062271118164,
|
364 |
+
"learning_rate": 4.7713717693836986e-08,
|
365 |
+
"loss": 6.1026,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.051181102362204724,
|
370 |
+
"grad_norm": 31.13785171508789,
|
371 |
+
"learning_rate": 4.870775347912525e-08,
|
372 |
+
"loss": 6.632,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.05216535433070866,
|
377 |
+
"grad_norm": 29.648237228393555,
|
378 |
+
"learning_rate": 4.970178926441353e-08,
|
379 |
+
"loss": 6.6962,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.0531496062992126,
|
384 |
+
"grad_norm": 28.224645614624023,
|
385 |
+
"learning_rate": 5.06958250497018e-08,
|
386 |
+
"loss": 5.8514,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.054133858267716536,
|
391 |
+
"grad_norm": 28.693328857421875,
|
392 |
+
"learning_rate": 5.168986083499007e-08,
|
393 |
+
"loss": 5.9951,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.05511811023622047,
|
398 |
+
"grad_norm": 24.777812957763672,
|
399 |
+
"learning_rate": 5.268389662027834e-08,
|
400 |
+
"loss": 5.4554,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.05610236220472441,
|
405 |
+
"grad_norm": 26.11226463317871,
|
406 |
+
"learning_rate": 5.3677932405566605e-08,
|
407 |
+
"loss": 6.0147,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.05708661417322835,
|
412 |
+
"grad_norm": 24.698375701904297,
|
413 |
+
"learning_rate": 5.467196819085488e-08,
|
414 |
+
"loss": 5.215,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.058070866141732284,
|
419 |
+
"grad_norm": 26.616317749023438,
|
420 |
+
"learning_rate": 5.5666003976143156e-08,
|
421 |
+
"loss": 6.4525,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.05905511811023622,
|
426 |
+
"grad_norm": 26.09321403503418,
|
427 |
+
"learning_rate": 5.666003976143142e-08,
|
428 |
+
"loss": 5.4048,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.060039370078740155,
|
433 |
+
"grad_norm": 19.83713150024414,
|
434 |
+
"learning_rate": 5.7654075546719694e-08,
|
435 |
+
"loss": 5.0424,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.0610236220472441,
|
440 |
+
"grad_norm": 26.56923484802246,
|
441 |
+
"learning_rate": 5.864811133200796e-08,
|
442 |
+
"loss": 6.2646,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.06200787401574803,
|
447 |
+
"grad_norm": 23.580089569091797,
|
448 |
+
"learning_rate": 5.964214711729623e-08,
|
449 |
+
"loss": 5.0847,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.06299212598425197,
|
454 |
+
"grad_norm": 23.453126907348633,
|
455 |
+
"learning_rate": 6.06361829025845e-08,
|
456 |
+
"loss": 5.4415,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.0639763779527559,
|
461 |
+
"grad_norm": 21.229190826416016,
|
462 |
+
"learning_rate": 6.163021868787278e-08,
|
463 |
+
"loss": 5.2469,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.06496062992125984,
|
468 |
+
"grad_norm": 19.477190017700195,
|
469 |
+
"learning_rate": 6.262425447316104e-08,
|
470 |
+
"loss": 5.1378,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.06594488188976377,
|
475 |
+
"grad_norm": 19.40647315979004,
|
476 |
+
"learning_rate": 6.361829025844931e-08,
|
477 |
+
"loss": 5.1636,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.06692913385826772,
|
482 |
+
"grad_norm": 22.20977210998535,
|
483 |
+
"learning_rate": 6.461232604373759e-08,
|
484 |
+
"loss": 5.5596,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.06791338582677166,
|
489 |
+
"grad_norm": 19.186826705932617,
|
490 |
+
"learning_rate": 6.560636182902586e-08,
|
491 |
+
"loss": 4.9508,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.0688976377952756,
|
496 |
+
"grad_norm": 20.190908432006836,
|
497 |
+
"learning_rate": 6.660039761431412e-08,
|
498 |
+
"loss": 5.2355,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.06988188976377953,
|
503 |
+
"grad_norm": 18.122196197509766,
|
504 |
+
"learning_rate": 6.75944333996024e-08,
|
505 |
+
"loss": 4.7359,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.07086614173228346,
|
510 |
+
"grad_norm": 17.524765014648438,
|
511 |
+
"learning_rate": 6.858846918489067e-08,
|
512 |
+
"loss": 4.8947,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.0718503937007874,
|
517 |
+
"grad_norm": 18.821767807006836,
|
518 |
+
"learning_rate": 6.958250497017893e-08,
|
519 |
+
"loss": 4.6269,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.07283464566929133,
|
524 |
+
"grad_norm": 18.19922637939453,
|
525 |
+
"learning_rate": 7.057654075546721e-08,
|
526 |
+
"loss": 4.6072,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.07381889763779527,
|
531 |
+
"grad_norm": 16.908899307250977,
|
532 |
+
"learning_rate": 7.157057654075548e-08,
|
533 |
+
"loss": 4.9125,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.07480314960629922,
|
538 |
+
"grad_norm": 19.90263557434082,
|
539 |
+
"learning_rate": 7.256461232604374e-08,
|
540 |
+
"loss": 4.5856,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.07578740157480315,
|
545 |
+
"grad_norm": 17.92584800720215,
|
546 |
+
"learning_rate": 7.355864811133201e-08,
|
547 |
+
"loss": 4.7879,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.07677165354330709,
|
552 |
+
"grad_norm": 16.29261589050293,
|
553 |
+
"learning_rate": 7.455268389662029e-08,
|
554 |
+
"loss": 4.5348,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.07775590551181102,
|
559 |
+
"grad_norm": 16.3350887298584,
|
560 |
+
"learning_rate": 7.554671968190855e-08,
|
561 |
+
"loss": 4.3554,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.07874015748031496,
|
566 |
+
"grad_norm": 14.408184051513672,
|
567 |
+
"learning_rate": 7.654075546719683e-08,
|
568 |
+
"loss": 4.2984,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.0797244094488189,
|
573 |
+
"grad_norm": 16.71326446533203,
|
574 |
+
"learning_rate": 7.753479125248511e-08,
|
575 |
+
"loss": 4.5505,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.08070866141732283,
|
580 |
+
"grad_norm": 14.62590217590332,
|
581 |
+
"learning_rate": 7.852882703777338e-08,
|
582 |
+
"loss": 4.5325,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.08169291338582677,
|
587 |
+
"grad_norm": 17.189268112182617,
|
588 |
+
"learning_rate": 7.952286282306164e-08,
|
589 |
+
"loss": 4.2725,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.08267716535433071,
|
594 |
+
"grad_norm": 16.960248947143555,
|
595 |
+
"learning_rate": 8.051689860834992e-08,
|
596 |
+
"loss": 4.3054,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.08366141732283465,
|
601 |
+
"grad_norm": 15.114398956298828,
|
602 |
+
"learning_rate": 8.151093439363819e-08,
|
603 |
+
"loss": 4.5536,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.08464566929133858,
|
608 |
+
"grad_norm": 16.153371810913086,
|
609 |
+
"learning_rate": 8.250497017892645e-08,
|
610 |
+
"loss": 4.0265,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.08562992125984252,
|
615 |
+
"grad_norm": 15.731820106506348,
|
616 |
+
"learning_rate": 8.349900596421472e-08,
|
617 |
+
"loss": 4.7453,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.08661417322834646,
|
622 |
+
"grad_norm": 14.69382381439209,
|
623 |
+
"learning_rate": 8.4493041749503e-08,
|
624 |
+
"loss": 4.071,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.08759842519685039,
|
629 |
+
"grad_norm": 13.735575675964355,
|
630 |
+
"learning_rate": 8.548707753479126e-08,
|
631 |
+
"loss": 4.1582,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.08858267716535433,
|
636 |
+
"grad_norm": 16.017065048217773,
|
637 |
+
"learning_rate": 8.648111332007953e-08,
|
638 |
+
"loss": 4.1131,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.08956692913385826,
|
643 |
+
"grad_norm": 17.237276077270508,
|
644 |
+
"learning_rate": 8.747514910536782e-08,
|
645 |
+
"loss": 3.6582,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.09055118110236221,
|
650 |
+
"grad_norm": 15.59334945678711,
|
651 |
+
"learning_rate": 8.846918489065609e-08,
|
652 |
+
"loss": 4.143,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.09153543307086615,
|
657 |
+
"grad_norm": 14.918270111083984,
|
658 |
+
"learning_rate": 8.946322067594435e-08,
|
659 |
+
"loss": 4.2273,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.09251968503937008,
|
664 |
+
"grad_norm": 14.899909019470215,
|
665 |
+
"learning_rate": 9.045725646123262e-08,
|
666 |
+
"loss": 3.9321,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.09350393700787402,
|
671 |
+
"grad_norm": 18.112892150878906,
|
672 |
+
"learning_rate": 9.14512922465209e-08,
|
673 |
+
"loss": 4.2061,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.09448818897637795,
|
678 |
+
"grad_norm": 15.854629516601562,
|
679 |
+
"learning_rate": 9.244532803180916e-08,
|
680 |
+
"loss": 4.1042,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.09547244094488189,
|
685 |
+
"grad_norm": 16.44801139831543,
|
686 |
+
"learning_rate": 9.343936381709743e-08,
|
687 |
+
"loss": 3.9513,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.09645669291338582,
|
692 |
+
"grad_norm": 14.854127883911133,
|
693 |
+
"learning_rate": 9.44333996023857e-08,
|
694 |
+
"loss": 3.8627,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.09744094488188976,
|
699 |
+
"grad_norm": 17.02035903930664,
|
700 |
+
"learning_rate": 9.542743538767397e-08,
|
701 |
+
"loss": 4.3613,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.0984251968503937,
|
706 |
+
"grad_norm": 15.354338645935059,
|
707 |
+
"learning_rate": 9.642147117296224e-08,
|
708 |
+
"loss": 3.8513,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.09940944881889764,
|
713 |
+
"grad_norm": 16.35565757751465,
|
714 |
+
"learning_rate": 9.74155069582505e-08,
|
715 |
+
"loss": 3.5866,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.10039370078740158,
|
720 |
+
"grad_norm": 16.66194725036621,
|
721 |
+
"learning_rate": 9.840954274353878e-08,
|
722 |
+
"loss": 3.5239,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.10137795275590551,
|
727 |
+
"grad_norm": 15.875446319580078,
|
728 |
+
"learning_rate": 9.940357852882706e-08,
|
729 |
+
"loss": 3.5921,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.10236220472440945,
|
734 |
+
"grad_norm": 14.344114303588867,
|
735 |
+
"learning_rate": 1.0039761431411533e-07,
|
736 |
+
"loss": 3.5962,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.10334645669291338,
|
741 |
+
"grad_norm": 18.503963470458984,
|
742 |
+
"learning_rate": 1.013916500994036e-07,
|
743 |
+
"loss": 4.0001,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.10433070866141732,
|
748 |
+
"grad_norm": 16.944435119628906,
|
749 |
+
"learning_rate": 1.0238568588469187e-07,
|
750 |
+
"loss": 4.1374,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.10531496062992125,
|
755 |
+
"grad_norm": 16.46833038330078,
|
756 |
+
"learning_rate": 1.0337972166998014e-07,
|
757 |
+
"loss": 3.9049,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.1062992125984252,
|
762 |
+
"grad_norm": 14.921700477600098,
|
763 |
+
"learning_rate": 1.043737574552684e-07,
|
764 |
+
"loss": 3.2511,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.10728346456692914,
|
769 |
+
"grad_norm": 15.574972152709961,
|
770 |
+
"learning_rate": 1.0536779324055668e-07,
|
771 |
+
"loss": 3.2479,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.10826771653543307,
|
776 |
+
"grad_norm": 16.810884475708008,
|
777 |
+
"learning_rate": 1.0636182902584495e-07,
|
778 |
+
"loss": 3.6414,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.10925196850393701,
|
783 |
+
"grad_norm": 17.074661254882812,
|
784 |
+
"learning_rate": 1.0735586481113321e-07,
|
785 |
+
"loss": 3.6429,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.11023622047244094,
|
790 |
+
"grad_norm": 18.52947235107422,
|
791 |
+
"learning_rate": 1.0834990059642149e-07,
|
792 |
+
"loss": 3.423,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.11122047244094488,
|
797 |
+
"grad_norm": 18.681869506835938,
|
798 |
+
"learning_rate": 1.0934393638170976e-07,
|
799 |
+
"loss": 3.4967,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.11220472440944881,
|
804 |
+
"grad_norm": 20.385292053222656,
|
805 |
+
"learning_rate": 1.1033797216699802e-07,
|
806 |
+
"loss": 3.7649,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.11318897637795275,
|
811 |
+
"grad_norm": 18.912538528442383,
|
812 |
+
"learning_rate": 1.1133200795228631e-07,
|
813 |
+
"loss": 3.2845,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.1141732283464567,
|
818 |
+
"grad_norm": 17.856229782104492,
|
819 |
+
"learning_rate": 1.1232604373757458e-07,
|
820 |
+
"loss": 3.356,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.11515748031496063,
|
825 |
+
"grad_norm": 17.08562469482422,
|
826 |
+
"learning_rate": 1.1332007952286284e-07,
|
827 |
+
"loss": 3.2086,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.11614173228346457,
|
832 |
+
"grad_norm": 17.54237937927246,
|
833 |
+
"learning_rate": 1.1431411530815111e-07,
|
834 |
+
"loss": 3.5561,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.1171259842519685,
|
839 |
+
"grad_norm": 19.936498641967773,
|
840 |
+
"learning_rate": 1.1530815109343939e-07,
|
841 |
+
"loss": 3.7353,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.11811023622047244,
|
846 |
+
"grad_norm": 17.135496139526367,
|
847 |
+
"learning_rate": 1.1630218687872765e-07,
|
848 |
+
"loss": 3.403,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.11909448818897637,
|
853 |
+
"grad_norm": 17.260093688964844,
|
854 |
+
"learning_rate": 1.1729622266401592e-07,
|
855 |
+
"loss": 3.1009,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.12007874015748031,
|
860 |
+
"grad_norm": 17.075611114501953,
|
861 |
+
"learning_rate": 1.182902584493042e-07,
|
862 |
+
"loss": 3.2139,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.12106299212598425,
|
867 |
+
"grad_norm": 23.433874130249023,
|
868 |
+
"learning_rate": 1.1928429423459245e-07,
|
869 |
+
"loss": 3.3339,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.1220472440944882,
|
874 |
+
"grad_norm": 18.25501251220703,
|
875 |
+
"learning_rate": 1.2027833001988073e-07,
|
876 |
+
"loss": 2.9464,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.12303149606299213,
|
881 |
+
"grad_norm": 18.079578399658203,
|
882 |
+
"learning_rate": 1.21272365805169e-07,
|
883 |
+
"loss": 3.3366,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.12401574803149606,
|
888 |
+
"grad_norm": 16.392736434936523,
|
889 |
+
"learning_rate": 1.222664015904573e-07,
|
890 |
+
"loss": 3.0618,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.125,
|
895 |
+
"grad_norm": 15.782499313354492,
|
896 |
+
"learning_rate": 1.2326043737574557e-07,
|
897 |
+
"loss": 3.0092,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.12598425196850394,
|
902 |
+
"grad_norm": 14.74819278717041,
|
903 |
+
"learning_rate": 1.2425447316103382e-07,
|
904 |
+
"loss": 2.7152,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.12696850393700787,
|
909 |
+
"grad_norm": 17.743946075439453,
|
910 |
+
"learning_rate": 1.2524850894632207e-07,
|
911 |
+
"loss": 2.9423,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.1279527559055118,
|
916 |
+
"grad_norm": 15.759135246276855,
|
917 |
+
"learning_rate": 1.2624254473161035e-07,
|
918 |
+
"loss": 2.6569,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.12893700787401574,
|
923 |
+
"grad_norm": 18.54253387451172,
|
924 |
+
"learning_rate": 1.2723658051689863e-07,
|
925 |
+
"loss": 2.8469,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.12992125984251968,
|
930 |
+
"grad_norm": 18.318775177001953,
|
931 |
+
"learning_rate": 1.282306163021869e-07,
|
932 |
+
"loss": 2.9089,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.1309055118110236,
|
937 |
+
"grad_norm": 17.751266479492188,
|
938 |
+
"learning_rate": 1.2922465208747519e-07,
|
939 |
+
"loss": 2.5809,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.13188976377952755,
|
944 |
+
"grad_norm": 21.29975128173828,
|
945 |
+
"learning_rate": 1.3021868787276344e-07,
|
946 |
+
"loss": 2.6987,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1328740157480315,
|
951 |
+
"grad_norm": 19.9519100189209,
|
952 |
+
"learning_rate": 1.3121272365805172e-07,
|
953 |
+
"loss": 3.2518,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.13385826771653545,
|
958 |
+
"grad_norm": 19.99887466430664,
|
959 |
+
"learning_rate": 1.3220675944333997e-07,
|
960 |
+
"loss": 2.9145,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.13484251968503938,
|
965 |
+
"grad_norm": 17.0355167388916,
|
966 |
+
"learning_rate": 1.3320079522862825e-07,
|
967 |
+
"loss": 2.4809,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.13582677165354332,
|
972 |
+
"grad_norm": 18.628467559814453,
|
973 |
+
"learning_rate": 1.3419483101391653e-07,
|
974 |
+
"loss": 2.8264,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.13681102362204725,
|
979 |
+
"grad_norm": 19.511394500732422,
|
980 |
+
"learning_rate": 1.351888667992048e-07,
|
981 |
+
"loss": 2.5724,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.1377952755905512,
|
986 |
+
"grad_norm": 21.264480590820312,
|
987 |
+
"learning_rate": 1.3618290258449306e-07,
|
988 |
+
"loss": 2.6949,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.13877952755905512,
|
993 |
+
"grad_norm": 19.76134490966797,
|
994 |
+
"learning_rate": 1.3717693836978134e-07,
|
995 |
+
"loss": 2.6925,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.13976377952755906,
|
1000 |
+
"grad_norm": 20.930673599243164,
|
1001 |
+
"learning_rate": 1.381709741550696e-07,
|
1002 |
+
"loss": 2.9311,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.140748031496063,
|
1007 |
+
"grad_norm": 21.966018676757812,
|
1008 |
+
"learning_rate": 1.3916500994035787e-07,
|
1009 |
+
"loss": 2.5667,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.14173228346456693,
|
1014 |
+
"grad_norm": 21.916505813598633,
|
1015 |
+
"learning_rate": 1.4015904572564615e-07,
|
1016 |
+
"loss": 3.2471,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.14271653543307086,
|
1021 |
+
"grad_norm": 20.081771850585938,
|
1022 |
+
"learning_rate": 1.4115308151093443e-07,
|
1023 |
+
"loss": 2.2441,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.1437007874015748,
|
1028 |
+
"grad_norm": 22.893489837646484,
|
1029 |
+
"learning_rate": 1.421471172962227e-07,
|
1030 |
+
"loss": 2.75,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.14468503937007873,
|
1035 |
+
"grad_norm": 23.95358657836914,
|
1036 |
+
"learning_rate": 1.4314115308151096e-07,
|
1037 |
+
"loss": 2.9669,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.14566929133858267,
|
1042 |
+
"grad_norm": 21.101062774658203,
|
1043 |
+
"learning_rate": 1.4413518886679924e-07,
|
1044 |
+
"loss": 2.736,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.1466535433070866,
|
1049 |
+
"grad_norm": 25.240341186523438,
|
1050 |
+
"learning_rate": 1.451292246520875e-07,
|
1051 |
+
"loss": 3.104,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.14763779527559054,
|
1056 |
+
"grad_norm": 18.358688354492188,
|
1057 |
+
"learning_rate": 1.4612326043737577e-07,
|
1058 |
+
"loss": 2.2175,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.1486220472440945,
|
1063 |
+
"grad_norm": 21.986661911010742,
|
1064 |
+
"learning_rate": 1.4711729622266402e-07,
|
1065 |
+
"loss": 2.7415,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.14960629921259844,
|
1070 |
+
"grad_norm": 20.64093017578125,
|
1071 |
+
"learning_rate": 1.4811133200795232e-07,
|
1072 |
+
"loss": 1.8707,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.15059055118110237,
|
1077 |
+
"grad_norm": 20.602142333984375,
|
1078 |
+
"learning_rate": 1.4910536779324058e-07,
|
1079 |
+
"loss": 2.5961,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.15059055118110237,
|
1084 |
+
"eval_Qnli-dev_cosine_accuracy": 0.634765625,
|
1085 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.8508153557777405,
|
1086 |
+
"eval_Qnli-dev_cosine_ap": 0.6461335447626624,
|
1087 |
+
"eval_Qnli-dev_cosine_f1": 0.6505636070853462,
|
1088 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.7770615816116333,
|
1089 |
+
"eval_Qnli-dev_cosine_precision": 0.5246753246753246,
|
1090 |
+
"eval_Qnli-dev_cosine_recall": 0.8559322033898306,
|
1091 |
+
"eval_Qnli-dev_dot_accuracy": 0.634765625,
|
1092 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 653.7443237304688,
|
1093 |
+
"eval_Qnli-dev_dot_ap": 0.6461682282377894,
|
1094 |
+
"eval_Qnli-dev_dot_f1": 0.6505636070853462,
|
1095 |
+
"eval_Qnli-dev_dot_f1_threshold": 597.0731811523438,
|
1096 |
+
"eval_Qnli-dev_dot_precision": 0.5246753246753246,
|
1097 |
+
"eval_Qnli-dev_dot_recall": 0.8559322033898306,
|
1098 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.634765625,
|
1099 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 15.141305923461914,
|
1100 |
+
"eval_Qnli-dev_euclidean_ap": 0.6461382925406688,
|
1101 |
+
"eval_Qnli-dev_euclidean_f1": 0.6505636070853462,
|
1102 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 18.50943946838379,
|
1103 |
+
"eval_Qnli-dev_euclidean_precision": 0.5246753246753246,
|
1104 |
+
"eval_Qnli-dev_euclidean_recall": 0.8559322033898306,
|
1105 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.6328125,
|
1106 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 331.46282958984375,
|
1107 |
+
"eval_Qnli-dev_manhattan_ap": 0.6431949026371255,
|
1108 |
+
"eval_Qnli-dev_manhattan_f1": 0.6501650165016502,
|
1109 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 404.6050109863281,
|
1110 |
+
"eval_Qnli-dev_manhattan_precision": 0.5324324324324324,
|
1111 |
+
"eval_Qnli-dev_manhattan_recall": 0.8347457627118644,
|
1112 |
+
"eval_Qnli-dev_max_accuracy": 0.634765625,
|
1113 |
+
"eval_Qnli-dev_max_accuracy_threshold": 653.7443237304688,
|
1114 |
+
"eval_Qnli-dev_max_ap": 0.6461682282377894,
|
1115 |
+
"eval_Qnli-dev_max_f1": 0.6505636070853462,
|
1116 |
+
"eval_Qnli-dev_max_f1_threshold": 597.0731811523438,
|
1117 |
+
"eval_Qnli-dev_max_precision": 0.5324324324324324,
|
1118 |
+
"eval_Qnli-dev_max_recall": 0.8559322033898306,
|
1119 |
+
"eval_allNLI-dev_cosine_accuracy": 0.67578125,
|
1120 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9452645182609558,
|
1121 |
+
"eval_allNLI-dev_cosine_ap": 0.4264736612515921,
|
1122 |
+
"eval_allNLI-dev_cosine_f1": 0.512,
|
1123 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.8565204739570618,
|
1124 |
+
"eval_allNLI-dev_cosine_precision": 0.39143730886850153,
|
1125 |
+
"eval_allNLI-dev_cosine_recall": 0.7398843930635838,
|
1126 |
+
"eval_allNLI-dev_dot_accuracy": 0.67578125,
|
1127 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 726.30615234375,
|
1128 |
+
"eval_allNLI-dev_dot_ap": 0.42647535250956575,
|
1129 |
+
"eval_allNLI-dev_dot_f1": 0.512,
|
1130 |
+
"eval_allNLI-dev_dot_f1_threshold": 658.1103515625,
|
1131 |
+
"eval_allNLI-dev_dot_precision": 0.39143730886850153,
|
1132 |
+
"eval_allNLI-dev_dot_recall": 0.7398843930635838,
|
1133 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.67578125,
|
1134 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 9.171283721923828,
|
1135 |
+
"eval_allNLI-dev_euclidean_ap": 0.4264736612515921,
|
1136 |
+
"eval_allNLI-dev_euclidean_f1": 0.512,
|
1137 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 14.84876823425293,
|
1138 |
+
"eval_allNLI-dev_euclidean_precision": 0.39143730886850153,
|
1139 |
+
"eval_allNLI-dev_euclidean_recall": 0.7398843930635838,
|
1140 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.67578125,
|
1141 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 201.49061584472656,
|
1142 |
+
"eval_allNLI-dev_manhattan_ap": 0.4252213828672732,
|
1143 |
+
"eval_allNLI-dev_manhattan_f1": 0.5107692307692308,
|
1144 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 417.52728271484375,
|
1145 |
+
"eval_allNLI-dev_manhattan_precision": 0.3480083857442348,
|
1146 |
+
"eval_allNLI-dev_manhattan_recall": 0.9595375722543352,
|
1147 |
+
"eval_allNLI-dev_max_accuracy": 0.67578125,
|
1148 |
+
"eval_allNLI-dev_max_accuracy_threshold": 726.30615234375,
|
1149 |
+
"eval_allNLI-dev_max_ap": 0.42647535250956575,
|
1150 |
+
"eval_allNLI-dev_max_f1": 0.512,
|
1151 |
+
"eval_allNLI-dev_max_f1_threshold": 658.1103515625,
|
1152 |
+
"eval_allNLI-dev_max_precision": 0.39143730886850153,
|
1153 |
+
"eval_allNLI-dev_max_recall": 0.9595375722543352,
|
1154 |
+
"eval_loss": 2.2652623653411865,
|
1155 |
+
"eval_runtime": 50.7627,
|
1156 |
+
"eval_samples_per_second": 32.78,
|
1157 |
+
"eval_sequential_score": 0.6461682282377894,
|
1158 |
+
"eval_steps_per_second": 0.138,
|
1159 |
+
"eval_sts-test_pearson_cosine": 0.2749904272806095,
|
1160 |
+
"eval_sts-test_pearson_dot": 0.27496363262371837,
|
1161 |
+
"eval_sts-test_pearson_euclidean": 0.2934483033082174,
|
1162 |
+
"eval_sts-test_pearson_manhattan": 0.2923996087310511,
|
1163 |
+
"eval_sts-test_pearson_max": 0.2934483033082174,
|
1164 |
+
"eval_sts-test_spearman_cosine": 0.31159390381099095,
|
1165 |
+
"eval_sts-test_spearman_dot": 0.31138581044552094,
|
1166 |
+
"eval_sts-test_spearman_euclidean": 0.3115817314678925,
|
1167 |
+
"eval_sts-test_spearman_manhattan": 0.3095556181083969,
|
1168 |
+
"eval_sts-test_spearman_max": 0.31159390381099095,
|
1169 |
+
"step": 153
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 0.1515748031496063,
|
1173 |
+
"grad_norm": 22.330442428588867,
|
1174 |
+
"learning_rate": 1.5009940357852886e-07,
|
1175 |
+
"loss": 3.1149,
|
1176 |
+
"step": 154
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.15255905511811024,
|
1180 |
+
"grad_norm": 23.656953811645508,
|
1181 |
+
"learning_rate": 1.510934393638171e-07,
|
1182 |
+
"loss": 2.2976,
|
1183 |
+
"step": 155
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"epoch": 0.15354330708661418,
|
1187 |
+
"grad_norm": 20.271608352661133,
|
1188 |
+
"learning_rate": 1.5208747514910539e-07,
|
1189 |
+
"loss": 2.4436,
|
1190 |
+
"step": 156
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.1545275590551181,
|
1194 |
+
"grad_norm": 25.410293579101562,
|
1195 |
+
"learning_rate": 1.5308151093439367e-07,
|
1196 |
+
"loss": 2.8826,
|
1197 |
+
"step": 157
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.15551181102362205,
|
1201 |
+
"grad_norm": 23.772783279418945,
|
1202 |
+
"learning_rate": 1.5407554671968192e-07,
|
1203 |
+
"loss": 2.3664,
|
1204 |
+
"step": 158
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"epoch": 0.15649606299212598,
|
1208 |
+
"grad_norm": 23.44937515258789,
|
1209 |
+
"learning_rate": 1.5506958250497022e-07,
|
1210 |
+
"loss": 2.2485,
|
1211 |
+
"step": 159
|
1212 |
+
},
|
1213 |
+
{
|
1214 |
+
"epoch": 0.15748031496062992,
|
1215 |
+
"grad_norm": 23.024261474609375,
|
1216 |
+
"learning_rate": 1.5606361829025848e-07,
|
1217 |
+
"loss": 2.5167,
|
1218 |
+
"step": 160
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"epoch": 0.15846456692913385,
|
1222 |
+
"grad_norm": 20.63090705871582,
|
1223 |
+
"learning_rate": 1.5705765407554675e-07,
|
1224 |
+
"loss": 1.7183,
|
1225 |
+
"step": 161
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"epoch": 0.1594488188976378,
|
1229 |
+
"grad_norm": 21.573190689086914,
|
1230 |
+
"learning_rate": 1.58051689860835e-07,
|
1231 |
+
"loss": 2.1003,
|
1232 |
+
"step": 162
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.16043307086614172,
|
1236 |
+
"grad_norm": 23.774974822998047,
|
1237 |
+
"learning_rate": 1.5904572564612329e-07,
|
1238 |
+
"loss": 2.5785,
|
1239 |
+
"step": 163
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.16141732283464566,
|
1243 |
+
"grad_norm": 27.151123046875,
|
1244 |
+
"learning_rate": 1.6003976143141154e-07,
|
1245 |
+
"loss": 2.8789,
|
1246 |
+
"step": 164
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 0.1624015748031496,
|
1250 |
+
"grad_norm": 23.50958824157715,
|
1251 |
+
"learning_rate": 1.6103379721669984e-07,
|
1252 |
+
"loss": 2.3425,
|
1253 |
+
"step": 165
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 0.16338582677165353,
|
1257 |
+
"grad_norm": 23.77661895751953,
|
1258 |
+
"learning_rate": 1.620278330019881e-07,
|
1259 |
+
"loss": 2.0966,
|
1260 |
+
"step": 166
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 0.1643700787401575,
|
1264 |
+
"grad_norm": 22.070526123046875,
|
1265 |
+
"learning_rate": 1.6302186878727637e-07,
|
1266 |
+
"loss": 2.1126,
|
1267 |
+
"step": 167
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 0.16535433070866143,
|
1271 |
+
"grad_norm": 22.653602600097656,
|
1272 |
+
"learning_rate": 1.6401590457256465e-07,
|
1273 |
+
"loss": 2.1824,
|
1274 |
+
"step": 168
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.16633858267716536,
|
1278 |
+
"grad_norm": 21.470808029174805,
|
1279 |
+
"learning_rate": 1.650099403578529e-07,
|
1280 |
+
"loss": 2.2009,
|
1281 |
+
"step": 169
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.1673228346456693,
|
1285 |
+
"grad_norm": 25.822694778442383,
|
1286 |
+
"learning_rate": 1.6600397614314118e-07,
|
1287 |
+
"loss": 2.3796,
|
1288 |
+
"step": 170
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 0.16830708661417323,
|
1292 |
+
"grad_norm": 22.609458923339844,
|
1293 |
+
"learning_rate": 1.6699801192842944e-07,
|
1294 |
+
"loss": 2.3096,
|
1295 |
+
"step": 171
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 0.16929133858267717,
|
1299 |
+
"grad_norm": 24.10075569152832,
|
1300 |
+
"learning_rate": 1.6799204771371774e-07,
|
1301 |
+
"loss": 2.7897,
|
1302 |
+
"step": 172
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 0.1702755905511811,
|
1306 |
+
"grad_norm": 22.21641731262207,
|
1307 |
+
"learning_rate": 1.68986083499006e-07,
|
1308 |
+
"loss": 2.2097,
|
1309 |
+
"step": 173
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"epoch": 0.17125984251968504,
|
1313 |
+
"grad_norm": 17.717933654785156,
|
1314 |
+
"learning_rate": 1.6998011928429427e-07,
|
1315 |
+
"loss": 1.7508,
|
1316 |
+
"step": 174
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.17224409448818898,
|
1320 |
+
"grad_norm": 22.352798461914062,
|
1321 |
+
"learning_rate": 1.7097415506958253e-07,
|
1322 |
+
"loss": 2.353,
|
1323 |
+
"step": 175
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.1732283464566929,
|
1327 |
+
"grad_norm": 23.421472549438477,
|
1328 |
+
"learning_rate": 1.719681908548708e-07,
|
1329 |
+
"loss": 2.4276,
|
1330 |
+
"step": 176
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 0.17421259842519685,
|
1334 |
+
"grad_norm": 20.41706657409668,
|
1335 |
+
"learning_rate": 1.7296222664015906e-07,
|
1336 |
+
"loss": 2.1016,
|
1337 |
+
"step": 177
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 0.17519685039370078,
|
1341 |
+
"grad_norm": 19.39253807067871,
|
1342 |
+
"learning_rate": 1.7395626242544734e-07,
|
1343 |
+
"loss": 1.8461,
|
1344 |
+
"step": 178
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 0.17618110236220472,
|
1348 |
+
"grad_norm": 19.994935989379883,
|
1349 |
+
"learning_rate": 1.7495029821073564e-07,
|
1350 |
+
"loss": 1.8104,
|
1351 |
+
"step": 179
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 0.17716535433070865,
|
1355 |
+
"grad_norm": 24.119571685791016,
|
1356 |
+
"learning_rate": 1.759443339960239e-07,
|
1357 |
+
"loss": 2.6023,
|
1358 |
+
"step": 180
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.1781496062992126,
|
1362 |
+
"grad_norm": 28.111419677734375,
|
1363 |
+
"learning_rate": 1.7693836978131217e-07,
|
1364 |
+
"loss": 2.5261,
|
1365 |
+
"step": 181
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.17913385826771652,
|
1369 |
+
"grad_norm": 26.244142532348633,
|
1370 |
+
"learning_rate": 1.7793240556660042e-07,
|
1371 |
+
"loss": 2.1053,
|
1372 |
+
"step": 182
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 0.18011811023622049,
|
1376 |
+
"grad_norm": 24.29507827758789,
|
1377 |
+
"learning_rate": 1.789264413518887e-07,
|
1378 |
+
"loss": 1.9712,
|
1379 |
+
"step": 183
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 0.18110236220472442,
|
1383 |
+
"grad_norm": 26.753236770629883,
|
1384 |
+
"learning_rate": 1.7992047713717695e-07,
|
1385 |
+
"loss": 2.4693,
|
1386 |
+
"step": 184
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 0.18208661417322836,
|
1390 |
+
"grad_norm": 23.031953811645508,
|
1391 |
+
"learning_rate": 1.8091451292246523e-07,
|
1392 |
+
"loss": 2.1119,
|
1393 |
+
"step": 185
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 0.1830708661417323,
|
1397 |
+
"grad_norm": 24.926044464111328,
|
1398 |
+
"learning_rate": 1.819085487077535e-07,
|
1399 |
+
"loss": 2.4797,
|
1400 |
+
"step": 186
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.18405511811023623,
|
1404 |
+
"grad_norm": 19.047605514526367,
|
1405 |
+
"learning_rate": 1.829025844930418e-07,
|
1406 |
+
"loss": 2.1587,
|
1407 |
+
"step": 187
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.18503937007874016,
|
1411 |
+
"grad_norm": 26.785459518432617,
|
1412 |
+
"learning_rate": 1.8389662027833004e-07,
|
1413 |
+
"loss": 1.9578,
|
1414 |
+
"step": 188
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 0.1860236220472441,
|
1418 |
+
"grad_norm": 22.257556915283203,
|
1419 |
+
"learning_rate": 1.8489065606361832e-07,
|
1420 |
+
"loss": 2.1368,
|
1421 |
+
"step": 189
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 0.18700787401574803,
|
1425 |
+
"grad_norm": 24.006427764892578,
|
1426 |
+
"learning_rate": 1.8588469184890657e-07,
|
1427 |
+
"loss": 2.4212,
|
1428 |
+
"step": 190
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 0.18799212598425197,
|
1432 |
+
"grad_norm": 22.14805793762207,
|
1433 |
+
"learning_rate": 1.8687872763419485e-07,
|
1434 |
+
"loss": 1.9591,
|
1435 |
+
"step": 191
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 0.1889763779527559,
|
1439 |
+
"grad_norm": 19.438581466674805,
|
1440 |
+
"learning_rate": 1.8787276341948313e-07,
|
1441 |
+
"loss": 1.5816,
|
1442 |
+
"step": 192
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.18996062992125984,
|
1446 |
+
"grad_norm": 19.473068237304688,
|
1447 |
+
"learning_rate": 1.888667992047714e-07,
|
1448 |
+
"loss": 1.4029,
|
1449 |
+
"step": 193
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.19094488188976377,
|
1453 |
+
"grad_norm": 22.895261764526367,
|
1454 |
+
"learning_rate": 1.898608349900597e-07,
|
1455 |
+
"loss": 1.9385,
|
1456 |
+
"step": 194
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 0.1919291338582677,
|
1460 |
+
"grad_norm": 22.117504119873047,
|
1461 |
+
"learning_rate": 1.9085487077534794e-07,
|
1462 |
+
"loss": 1.5596,
|
1463 |
+
"step": 195
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 0.19291338582677164,
|
1467 |
+
"grad_norm": 25.059682846069336,
|
1468 |
+
"learning_rate": 1.9184890656063622e-07,
|
1469 |
+
"loss": 1.6663,
|
1470 |
+
"step": 196
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 0.19389763779527558,
|
1474 |
+
"grad_norm": 31.338993072509766,
|
1475 |
+
"learning_rate": 1.9284294234592447e-07,
|
1476 |
+
"loss": 2.0026,
|
1477 |
+
"step": 197
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"epoch": 0.19488188976377951,
|
1481 |
+
"grad_norm": 25.27398681640625,
|
1482 |
+
"learning_rate": 1.9383697813121275e-07,
|
1483 |
+
"loss": 2.0046,
|
1484 |
+
"step": 198
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.19586614173228348,
|
1488 |
+
"grad_norm": 22.62946128845215,
|
1489 |
+
"learning_rate": 1.94831013916501e-07,
|
1490 |
+
"loss": 1.5016,
|
1491 |
+
"step": 199
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.1968503937007874,
|
1495 |
+
"grad_norm": 26.856422424316406,
|
1496 |
+
"learning_rate": 1.958250497017893e-07,
|
1497 |
+
"loss": 2.184,
|
1498 |
+
"step": 200
|
1499 |
+
},
|
1500 |
+
{
|
1501 |
+
"epoch": 0.19783464566929135,
|
1502 |
+
"grad_norm": 27.561872482299805,
|
1503 |
+
"learning_rate": 1.9681908548707756e-07,
|
1504 |
+
"loss": 2.3442,
|
1505 |
+
"step": 201
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 0.19881889763779528,
|
1509 |
+
"grad_norm": 29.985654830932617,
|
1510 |
+
"learning_rate": 1.9781312127236584e-07,
|
1511 |
+
"loss": 2.6981,
|
1512 |
+
"step": 202
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 0.19980314960629922,
|
1516 |
+
"grad_norm": 22.171070098876953,
|
1517 |
+
"learning_rate": 1.9880715705765412e-07,
|
1518 |
+
"loss": 2.5481,
|
1519 |
+
"step": 203
|
1520 |
+
},
|
1521 |
+
{
|
1522 |
+
"epoch": 0.20078740157480315,
|
1523 |
+
"grad_norm": 26.214073181152344,
|
1524 |
+
"learning_rate": 1.9980119284294237e-07,
|
1525 |
+
"loss": 2.9798,
|
1526 |
+
"step": 204
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.2017716535433071,
|
1530 |
+
"grad_norm": 22.690643310546875,
|
1531 |
+
"learning_rate": 2.0079522862823065e-07,
|
1532 |
+
"loss": 2.287,
|
1533 |
+
"step": 205
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.20275590551181102,
|
1537 |
+
"grad_norm": 21.528181076049805,
|
1538 |
+
"learning_rate": 2.017892644135189e-07,
|
1539 |
+
"loss": 1.9393,
|
1540 |
+
"step": 206
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 0.20374015748031496,
|
1544 |
+
"grad_norm": 24.61495018005371,
|
1545 |
+
"learning_rate": 2.027833001988072e-07,
|
1546 |
+
"loss": 2.892,
|
1547 |
+
"step": 207
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"epoch": 0.2047244094488189,
|
1551 |
+
"grad_norm": 21.661781311035156,
|
1552 |
+
"learning_rate": 2.0377733598409546e-07,
|
1553 |
+
"loss": 2.26,
|
1554 |
+
"step": 208
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 0.20570866141732283,
|
1558 |
+
"grad_norm": 21.17841339111328,
|
1559 |
+
"learning_rate": 2.0477137176938374e-07,
|
1560 |
+
"loss": 2.5911,
|
1561 |
+
"step": 209
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 0.20669291338582677,
|
1565 |
+
"grad_norm": 22.297616958618164,
|
1566 |
+
"learning_rate": 2.05765407554672e-07,
|
1567 |
+
"loss": 2.1239,
|
1568 |
+
"step": 210
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.2076771653543307,
|
1572 |
+
"grad_norm": 18.447376251220703,
|
1573 |
+
"learning_rate": 2.0675944333996027e-07,
|
1574 |
+
"loss": 2.0683,
|
1575 |
+
"step": 211
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.20866141732283464,
|
1579 |
+
"grad_norm": 19.692792892456055,
|
1580 |
+
"learning_rate": 2.0775347912524852e-07,
|
1581 |
+
"loss": 1.768,
|
1582 |
+
"step": 212
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"epoch": 0.20964566929133857,
|
1586 |
+
"grad_norm": 24.793012619018555,
|
1587 |
+
"learning_rate": 2.087475149105368e-07,
|
1588 |
+
"loss": 2.5468,
|
1589 |
+
"step": 213
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"epoch": 0.2106299212598425,
|
1593 |
+
"grad_norm": 21.60909652709961,
|
1594 |
+
"learning_rate": 2.097415506958251e-07,
|
1595 |
+
"loss": 1.8956,
|
1596 |
+
"step": 214
|
1597 |
+
},
|
1598 |
+
{
|
1599 |
+
"epoch": 0.21161417322834647,
|
1600 |
+
"grad_norm": 22.114286422729492,
|
1601 |
+
"learning_rate": 2.1073558648111336e-07,
|
1602 |
+
"loss": 2.044,
|
1603 |
+
"step": 215
|
1604 |
+
},
|
1605 |
+
{
|
1606 |
+
"epoch": 0.2125984251968504,
|
1607 |
+
"grad_norm": 19.02837562561035,
|
1608 |
+
"learning_rate": 2.1172962226640164e-07,
|
1609 |
+
"loss": 1.5721,
|
1610 |
+
"step": 216
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.21358267716535434,
|
1614 |
+
"grad_norm": 19.785751342773438,
|
1615 |
+
"learning_rate": 2.127236580516899e-07,
|
1616 |
+
"loss": 1.6278,
|
1617 |
+
"step": 217
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.21456692913385828,
|
1621 |
+
"grad_norm": 21.3282470703125,
|
1622 |
+
"learning_rate": 2.1371769383697817e-07,
|
1623 |
+
"loss": 1.7754,
|
1624 |
+
"step": 218
|
1625 |
+
},
|
1626 |
+
{
|
1627 |
+
"epoch": 0.2155511811023622,
|
1628 |
+
"grad_norm": 25.80916404724121,
|
1629 |
+
"learning_rate": 2.1471172962226642e-07,
|
1630 |
+
"loss": 1.8594,
|
1631 |
+
"step": 219
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 0.21653543307086615,
|
1635 |
+
"grad_norm": 21.912315368652344,
|
1636 |
+
"learning_rate": 2.1570576540755473e-07,
|
1637 |
+
"loss": 1.8309,
|
1638 |
+
"step": 220
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"epoch": 0.21751968503937008,
|
1642 |
+
"grad_norm": 24.051366806030273,
|
1643 |
+
"learning_rate": 2.1669980119284298e-07,
|
1644 |
+
"loss": 2.0619,
|
1645 |
+
"step": 221
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"epoch": 0.21850393700787402,
|
1649 |
+
"grad_norm": 24.29237174987793,
|
1650 |
+
"learning_rate": 2.1769383697813126e-07,
|
1651 |
+
"loss": 2.3335,
|
1652 |
+
"step": 222
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.21948818897637795,
|
1656 |
+
"grad_norm": 25.850160598754883,
|
1657 |
+
"learning_rate": 2.186878727634195e-07,
|
1658 |
+
"loss": 2.023,
|
1659 |
+
"step": 223
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.2204724409448819,
|
1663 |
+
"grad_norm": 27.208112716674805,
|
1664 |
+
"learning_rate": 2.196819085487078e-07,
|
1665 |
+
"loss": 2.1975,
|
1666 |
+
"step": 224
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 0.22145669291338582,
|
1670 |
+
"grad_norm": 22.276878356933594,
|
1671 |
+
"learning_rate": 2.2067594433399604e-07,
|
1672 |
+
"loss": 1.9228,
|
1673 |
+
"step": 225
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 0.22244094488188976,
|
1677 |
+
"grad_norm": 30.213895797729492,
|
1678 |
+
"learning_rate": 2.2166998011928432e-07,
|
1679 |
+
"loss": 2.3565,
|
1680 |
+
"step": 226
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 0.2234251968503937,
|
1684 |
+
"grad_norm": 22.16749382019043,
|
1685 |
+
"learning_rate": 2.2266401590457263e-07,
|
1686 |
+
"loss": 1.896,
|
1687 |
+
"step": 227
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 0.22440944881889763,
|
1691 |
+
"grad_norm": 21.131744384765625,
|
1692 |
+
"learning_rate": 2.2365805168986088e-07,
|
1693 |
+
"loss": 2.0912,
|
1694 |
+
"step": 228
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.22539370078740156,
|
1698 |
+
"grad_norm": 25.1036376953125,
|
1699 |
+
"learning_rate": 2.2465208747514916e-07,
|
1700 |
+
"loss": 2.7703,
|
1701 |
+
"step": 229
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.2263779527559055,
|
1705 |
+
"grad_norm": 25.316814422607422,
|
1706 |
+
"learning_rate": 2.256461232604374e-07,
|
1707 |
+
"loss": 1.6988,
|
1708 |
+
"step": 230
|
1709 |
+
},
|
1710 |
+
{
|
1711 |
+
"epoch": 0.22736220472440946,
|
1712 |
+
"grad_norm": 25.363996505737305,
|
1713 |
+
"learning_rate": 2.266401590457257e-07,
|
1714 |
+
"loss": 2.0406,
|
1715 |
+
"step": 231
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"epoch": 0.2283464566929134,
|
1719 |
+
"grad_norm": 21.906835556030273,
|
1720 |
+
"learning_rate": 2.2763419483101394e-07,
|
1721 |
+
"loss": 1.9288,
|
1722 |
+
"step": 232
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 0.22933070866141733,
|
1726 |
+
"grad_norm": 21.407150268554688,
|
1727 |
+
"learning_rate": 2.2862823061630222e-07,
|
1728 |
+
"loss": 2.0457,
|
1729 |
+
"step": 233
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 0.23031496062992127,
|
1733 |
+
"grad_norm": 21.2374210357666,
|
1734 |
+
"learning_rate": 2.296222664015905e-07,
|
1735 |
+
"loss": 1.7061,
|
1736 |
+
"step": 234
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 0.2312992125984252,
|
1740 |
+
"grad_norm": 20.94179344177246,
|
1741 |
+
"learning_rate": 2.3061630218687878e-07,
|
1742 |
+
"loss": 1.6244,
|
1743 |
+
"step": 235
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.23228346456692914,
|
1747 |
+
"grad_norm": 21.845712661743164,
|
1748 |
+
"learning_rate": 2.3161033797216703e-07,
|
1749 |
+
"loss": 2.0241,
|
1750 |
+
"step": 236
|
1751 |
+
},
|
1752 |
+
{
|
1753 |
+
"epoch": 0.23326771653543307,
|
1754 |
+
"grad_norm": 19.496191024780273,
|
1755 |
+
"learning_rate": 2.326043737574553e-07,
|
1756 |
+
"loss": 1.567,
|
1757 |
+
"step": 237
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 0.234251968503937,
|
1761 |
+
"grad_norm": 21.819353103637695,
|
1762 |
+
"learning_rate": 2.335984095427436e-07,
|
1763 |
+
"loss": 1.8084,
|
1764 |
+
"step": 238
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 0.23523622047244094,
|
1768 |
+
"grad_norm": 27.17051124572754,
|
1769 |
+
"learning_rate": 2.3459244532803184e-07,
|
1770 |
+
"loss": 2.4363,
|
1771 |
+
"step": 239
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 0.23622047244094488,
|
1775 |
+
"grad_norm": 24.850723266601562,
|
1776 |
+
"learning_rate": 2.3558648111332012e-07,
|
1777 |
+
"loss": 1.7532,
|
1778 |
+
"step": 240
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.2372047244094488,
|
1782 |
+
"grad_norm": 24.120052337646484,
|
1783 |
+
"learning_rate": 2.365805168986084e-07,
|
1784 |
+
"loss": 2.0797,
|
1785 |
+
"step": 241
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.23818897637795275,
|
1789 |
+
"grad_norm": 23.708179473876953,
|
1790 |
+
"learning_rate": 2.3757455268389668e-07,
|
1791 |
+
"loss": 1.9562,
|
1792 |
+
"step": 242
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"epoch": 0.23917322834645668,
|
1796 |
+
"grad_norm": 20.58576774597168,
|
1797 |
+
"learning_rate": 2.385685884691849e-07,
|
1798 |
+
"loss": 1.6751,
|
1799 |
+
"step": 243
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 0.24015748031496062,
|
1803 |
+
"grad_norm": 25.161970138549805,
|
1804 |
+
"learning_rate": 2.395626242544732e-07,
|
1805 |
+
"loss": 2.0265,
|
1806 |
+
"step": 244
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 0.24114173228346455,
|
1810 |
+
"grad_norm": 22.079387664794922,
|
1811 |
+
"learning_rate": 2.4055666003976146e-07,
|
1812 |
+
"loss": 1.6065,
|
1813 |
+
"step": 245
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 0.2421259842519685,
|
1817 |
+
"grad_norm": 20.125717163085938,
|
1818 |
+
"learning_rate": 2.4155069582504976e-07,
|
1819 |
+
"loss": 1.7439,
|
1820 |
+
"step": 246
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.24311023622047245,
|
1824 |
+
"grad_norm": 22.855445861816406,
|
1825 |
+
"learning_rate": 2.42544731610338e-07,
|
1826 |
+
"loss": 2.0237,
|
1827 |
+
"step": 247
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.2440944881889764,
|
1831 |
+
"grad_norm": 22.16312026977539,
|
1832 |
+
"learning_rate": 2.4353876739562627e-07,
|
1833 |
+
"loss": 1.6128,
|
1834 |
+
"step": 248
|
1835 |
+
},
|
1836 |
+
{
|
1837 |
+
"epoch": 0.24507874015748032,
|
1838 |
+
"grad_norm": 21.942440032958984,
|
1839 |
+
"learning_rate": 2.445328031809146e-07,
|
1840 |
+
"loss": 1.6581,
|
1841 |
+
"step": 249
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 0.24606299212598426,
|
1845 |
+
"grad_norm": 24.027729034423828,
|
1846 |
+
"learning_rate": 2.4552683896620283e-07,
|
1847 |
+
"loss": 2.1538,
|
1848 |
+
"step": 250
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 0.2470472440944882,
|
1852 |
+
"grad_norm": 23.1455078125,
|
1853 |
+
"learning_rate": 2.4652087475149113e-07,
|
1854 |
+
"loss": 2.049,
|
1855 |
+
"step": 251
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 0.24803149606299213,
|
1859 |
+
"grad_norm": 22.017520904541016,
|
1860 |
+
"learning_rate": 2.475149105367794e-07,
|
1861 |
+
"loss": 1.2573,
|
1862 |
+
"step": 252
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.24901574803149606,
|
1866 |
+
"grad_norm": 18.747554779052734,
|
1867 |
+
"learning_rate": 2.4850894632206764e-07,
|
1868 |
+
"loss": 1.5619,
|
1869 |
+
"step": 253
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.25,
|
1873 |
+
"grad_norm": 18.277063369750977,
|
1874 |
+
"learning_rate": 2.495029821073559e-07,
|
1875 |
+
"loss": 1.2611,
|
1876 |
+
"step": 254
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 0.25098425196850394,
|
1880 |
+
"grad_norm": 19.781038284301758,
|
1881 |
+
"learning_rate": 2.5049701789264414e-07,
|
1882 |
+
"loss": 1.3443,
|
1883 |
+
"step": 255
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 0.25196850393700787,
|
1887 |
+
"grad_norm": 21.605199813842773,
|
1888 |
+
"learning_rate": 2.5149105367793245e-07,
|
1889 |
+
"loss": 1.3436,
|
1890 |
+
"step": 256
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"epoch": 0.2529527559055118,
|
1894 |
+
"grad_norm": 29.64748764038086,
|
1895 |
+
"learning_rate": 2.524850894632207e-07,
|
1896 |
+
"loss": 2.8117,
|
1897 |
+
"step": 257
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 0.25393700787401574,
|
1901 |
+
"grad_norm": 19.245962142944336,
|
1902 |
+
"learning_rate": 2.53479125248509e-07,
|
1903 |
+
"loss": 1.7563,
|
1904 |
+
"step": 258
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.2549212598425197,
|
1908 |
+
"grad_norm": 18.752405166625977,
|
1909 |
+
"learning_rate": 2.5447316103379726e-07,
|
1910 |
+
"loss": 1.3148,
|
1911 |
+
"step": 259
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.2559055118110236,
|
1915 |
+
"grad_norm": 24.133914947509766,
|
1916 |
+
"learning_rate": 2.554671968190855e-07,
|
1917 |
+
"loss": 2.0278,
|
1918 |
+
"step": 260
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 0.25688976377952755,
|
1922 |
+
"grad_norm": 19.490673065185547,
|
1923 |
+
"learning_rate": 2.564612326043738e-07,
|
1924 |
+
"loss": 1.2403,
|
1925 |
+
"step": 261
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 0.2578740157480315,
|
1929 |
+
"grad_norm": 20.14169692993164,
|
1930 |
+
"learning_rate": 2.5745526838966207e-07,
|
1931 |
+
"loss": 1.588,
|
1932 |
+
"step": 262
|
1933 |
+
},
|
1934 |
+
{
|
1935 |
+
"epoch": 0.2588582677165354,
|
1936 |
+
"grad_norm": 26.948959350585938,
|
1937 |
+
"learning_rate": 2.5844930417495037e-07,
|
1938 |
+
"loss": 2.0071,
|
1939 |
+
"step": 263
|
1940 |
+
},
|
1941 |
+
{
|
1942 |
+
"epoch": 0.25984251968503935,
|
1943 |
+
"grad_norm": 22.330224990844727,
|
1944 |
+
"learning_rate": 2.5944333996023857e-07,
|
1945 |
+
"loss": 1.5312,
|
1946 |
+
"step": 264
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.2608267716535433,
|
1950 |
+
"grad_norm": 21.379629135131836,
|
1951 |
+
"learning_rate": 2.604373757455269e-07,
|
1952 |
+
"loss": 1.8641,
|
1953 |
+
"step": 265
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.2618110236220472,
|
1957 |
+
"grad_norm": 20.703140258789062,
|
1958 |
+
"learning_rate": 2.614314115308152e-07,
|
1959 |
+
"loss": 1.2933,
|
1960 |
+
"step": 266
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 0.26279527559055116,
|
1964 |
+
"grad_norm": 22.9117488861084,
|
1965 |
+
"learning_rate": 2.6242544731610343e-07,
|
1966 |
+
"loss": 1.6262,
|
1967 |
+
"step": 267
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 0.2637795275590551,
|
1971 |
+
"grad_norm": 23.842002868652344,
|
1972 |
+
"learning_rate": 2.634194831013917e-07,
|
1973 |
+
"loss": 1.721,
|
1974 |
+
"step": 268
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 0.26476377952755903,
|
1978 |
+
"grad_norm": 20.449384689331055,
|
1979 |
+
"learning_rate": 2.6441351888667994e-07,
|
1980 |
+
"loss": 1.4713,
|
1981 |
+
"step": 269
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 0.265748031496063,
|
1985 |
+
"grad_norm": 25.885969161987305,
|
1986 |
+
"learning_rate": 2.6540755467196824e-07,
|
1987 |
+
"loss": 1.4625,
|
1988 |
+
"step": 270
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.26673228346456695,
|
1992 |
+
"grad_norm": 24.52666473388672,
|
1993 |
+
"learning_rate": 2.664015904572565e-07,
|
1994 |
+
"loss": 1.7254,
|
1995 |
+
"step": 271
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.2677165354330709,
|
1999 |
+
"grad_norm": 23.4957275390625,
|
2000 |
+
"learning_rate": 2.6739562624254475e-07,
|
2001 |
+
"loss": 1.5108,
|
2002 |
+
"step": 272
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 0.2687007874015748,
|
2006 |
+
"grad_norm": 23.828855514526367,
|
2007 |
+
"learning_rate": 2.6838966202783305e-07,
|
2008 |
+
"loss": 2.1126,
|
2009 |
+
"step": 273
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 0.26968503937007876,
|
2013 |
+
"grad_norm": 21.05967903137207,
|
2014 |
+
"learning_rate": 2.693836978131213e-07,
|
2015 |
+
"loss": 1.3967,
|
2016 |
+
"step": 274
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 0.2706692913385827,
|
2020 |
+
"grad_norm": 24.555776596069336,
|
2021 |
+
"learning_rate": 2.703777335984096e-07,
|
2022 |
+
"loss": 1.7067,
|
2023 |
+
"step": 275
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 0.27165354330708663,
|
2027 |
+
"grad_norm": 22.135860443115234,
|
2028 |
+
"learning_rate": 2.7137176938369786e-07,
|
2029 |
+
"loss": 1.4847,
|
2030 |
+
"step": 276
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.27263779527559057,
|
2034 |
+
"grad_norm": 22.105913162231445,
|
2035 |
+
"learning_rate": 2.723658051689861e-07,
|
2036 |
+
"loss": 1.6515,
|
2037 |
+
"step": 277
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.2736220472440945,
|
2041 |
+
"grad_norm": 16.617225646972656,
|
2042 |
+
"learning_rate": 2.7335984095427437e-07,
|
2043 |
+
"loss": 0.9367,
|
2044 |
+
"step": 278
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 0.27460629921259844,
|
2048 |
+
"grad_norm": 26.01727867126465,
|
2049 |
+
"learning_rate": 2.743538767395627e-07,
|
2050 |
+
"loss": 2.0267,
|
2051 |
+
"step": 279
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 0.2755905511811024,
|
2055 |
+
"grad_norm": 22.522462844848633,
|
2056 |
+
"learning_rate": 2.75347912524851e-07,
|
2057 |
+
"loss": 1.5023,
|
2058 |
+
"step": 280
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 0.2765748031496063,
|
2062 |
+
"grad_norm": 20.646358489990234,
|
2063 |
+
"learning_rate": 2.763419483101392e-07,
|
2064 |
+
"loss": 1.1248,
|
2065 |
+
"step": 281
|
2066 |
+
},
|
2067 |
+
{
|
2068 |
+
"epoch": 0.27755905511811024,
|
2069 |
+
"grad_norm": 23.3087158203125,
|
2070 |
+
"learning_rate": 2.773359840954275e-07,
|
2071 |
+
"loss": 1.6224,
|
2072 |
+
"step": 282
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.2785433070866142,
|
2076 |
+
"grad_norm": 24.115968704223633,
|
2077 |
+
"learning_rate": 2.7833001988071574e-07,
|
2078 |
+
"loss": 1.7969,
|
2079 |
+
"step": 283
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.2795275590551181,
|
2083 |
+
"grad_norm": 27.229188919067383,
|
2084 |
+
"learning_rate": 2.7932405566600404e-07,
|
2085 |
+
"loss": 2.2498,
|
2086 |
+
"step": 284
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 0.28051181102362205,
|
2090 |
+
"grad_norm": 25.797216415405273,
|
2091 |
+
"learning_rate": 2.803180914512923e-07,
|
2092 |
+
"loss": 1.7477,
|
2093 |
+
"step": 285
|
2094 |
+
},
|
2095 |
+
{
|
2096 |
+
"epoch": 0.281496062992126,
|
2097 |
+
"grad_norm": 23.666858673095703,
|
2098 |
+
"learning_rate": 2.8131212723658055e-07,
|
2099 |
+
"loss": 1.6261,
|
2100 |
+
"step": 286
|
2101 |
+
},
|
2102 |
+
{
|
2103 |
+
"epoch": 0.2824803149606299,
|
2104 |
+
"grad_norm": 26.826387405395508,
|
2105 |
+
"learning_rate": 2.8230616302186885e-07,
|
2106 |
+
"loss": 2.0911,
|
2107 |
+
"step": 287
|
2108 |
+
},
|
2109 |
+
{
|
2110 |
+
"epoch": 0.28346456692913385,
|
2111 |
+
"grad_norm": 23.288511276245117,
|
2112 |
+
"learning_rate": 2.833001988071571e-07,
|
2113 |
+
"loss": 1.9519,
|
2114 |
+
"step": 288
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.2844488188976378,
|
2118 |
+
"grad_norm": 19.76810073852539,
|
2119 |
+
"learning_rate": 2.842942345924454e-07,
|
2120 |
+
"loss": 1.3132,
|
2121 |
+
"step": 289
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.2854330708661417,
|
2125 |
+
"grad_norm": 24.65778923034668,
|
2126 |
+
"learning_rate": 2.852882703777336e-07,
|
2127 |
+
"loss": 2.3292,
|
2128 |
+
"step": 290
|
2129 |
+
},
|
2130 |
+
{
|
2131 |
+
"epoch": 0.28641732283464566,
|
2132 |
+
"grad_norm": 19.230430603027344,
|
2133 |
+
"learning_rate": 2.862823061630219e-07,
|
2134 |
+
"loss": 1.3781,
|
2135 |
+
"step": 291
|
2136 |
+
},
|
2137 |
+
{
|
2138 |
+
"epoch": 0.2874015748031496,
|
2139 |
+
"grad_norm": 20.665143966674805,
|
2140 |
+
"learning_rate": 2.8727634194831017e-07,
|
2141 |
+
"loss": 1.5753,
|
2142 |
+
"step": 292
|
2143 |
+
},
|
2144 |
+
{
|
2145 |
+
"epoch": 0.28838582677165353,
|
2146 |
+
"grad_norm": 18.584993362426758,
|
2147 |
+
"learning_rate": 2.8827037773359847e-07,
|
2148 |
+
"loss": 1.4158,
|
2149 |
+
"step": 293
|
2150 |
+
},
|
2151 |
+
{
|
2152 |
+
"epoch": 0.28937007874015747,
|
2153 |
+
"grad_norm": 20.731081008911133,
|
2154 |
+
"learning_rate": 2.892644135188867e-07,
|
2155 |
+
"loss": 2.1661,
|
2156 |
+
"step": 294
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.2903543307086614,
|
2160 |
+
"grad_norm": 20.006755828857422,
|
2161 |
+
"learning_rate": 2.90258449304175e-07,
|
2162 |
+
"loss": 1.4928,
|
2163 |
+
"step": 295
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.29133858267716534,
|
2167 |
+
"grad_norm": 20.01453971862793,
|
2168 |
+
"learning_rate": 2.912524850894633e-07,
|
2169 |
+
"loss": 2.2825,
|
2170 |
+
"step": 296
|
2171 |
+
},
|
2172 |
+
{
|
2173 |
+
"epoch": 0.29232283464566927,
|
2174 |
+
"grad_norm": 18.137697219848633,
|
2175 |
+
"learning_rate": 2.9224652087475153e-07,
|
2176 |
+
"loss": 1.7261,
|
2177 |
+
"step": 297
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 0.2933070866141732,
|
2181 |
+
"grad_norm": 20.046411514282227,
|
2182 |
+
"learning_rate": 2.9324055666003984e-07,
|
2183 |
+
"loss": 1.8635,
|
2184 |
+
"step": 298
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 0.29429133858267714,
|
2188 |
+
"grad_norm": 15.859444618225098,
|
2189 |
+
"learning_rate": 2.9423459244532804e-07,
|
2190 |
+
"loss": 0.974,
|
2191 |
+
"step": 299
|
2192 |
+
},
|
2193 |
+
{
|
2194 |
+
"epoch": 0.2952755905511811,
|
2195 |
+
"grad_norm": 17.976015090942383,
|
2196 |
+
"learning_rate": 2.9522862823061634e-07,
|
2197 |
+
"loss": 1.53,
|
2198 |
+
"step": 300
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.296259842519685,
|
2202 |
+
"grad_norm": 20.52704429626465,
|
2203 |
+
"learning_rate": 2.9622266401590465e-07,
|
2204 |
+
"loss": 1.5985,
|
2205 |
+
"step": 301
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 0.297244094488189,
|
2209 |
+
"grad_norm": 19.45134925842285,
|
2210 |
+
"learning_rate": 2.972166998011929e-07,
|
2211 |
+
"loss": 1.2169,
|
2212 |
+
"step": 302
|
2213 |
+
},
|
2214 |
+
{
|
2215 |
+
"epoch": 0.29822834645669294,
|
2216 |
+
"grad_norm": 22.01141357421875,
|
2217 |
+
"learning_rate": 2.9821073558648115e-07,
|
2218 |
+
"loss": 1.771,
|
2219 |
+
"step": 303
|
2220 |
+
},
|
2221 |
+
{
|
2222 |
+
"epoch": 0.2992125984251969,
|
2223 |
+
"grad_norm": 17.591617584228516,
|
2224 |
+
"learning_rate": 2.992047713717694e-07,
|
2225 |
+
"loss": 1.4506,
|
2226 |
+
"step": 304
|
2227 |
+
},
|
2228 |
+
{
|
2229 |
+
"epoch": 0.3001968503937008,
|
2230 |
+
"grad_norm": 25.382244110107422,
|
2231 |
+
"learning_rate": 3.001988071570577e-07,
|
2232 |
+
"loss": 1.9496,
|
2233 |
+
"step": 305
|
2234 |
+
}
|
2235 |
+
],
|
2236 |
+
"logging_steps": 1,
|
2237 |
+
"max_steps": 3048,
|
2238 |
+
"num_input_tokens_seen": 0,
|
2239 |
+
"num_train_epochs": 3,
|
2240 |
+
"save_steps": 305,
|
2241 |
+
"stateful_callbacks": {
|
2242 |
+
"TrainerControl": {
|
2243 |
+
"args": {
|
2244 |
+
"should_epoch_stop": false,
|
2245 |
+
"should_evaluate": false,
|
2246 |
+
"should_log": false,
|
2247 |
+
"should_save": true,
|
2248 |
+
"should_training_stop": false
|
2249 |
+
},
|
2250 |
+
"attributes": {}
|
2251 |
+
}
|
2252 |
+
},
|
2253 |
+
"total_flos": 0.0,
|
2254 |
+
"train_batch_size": 32,
|
2255 |
+
"trial_name": null,
|
2256 |
+
"trial_params": null
|
2257 |
+
}
|
checkpoint-305/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ef082ecfeb35653388a04cfe07d1e8fd3de2824ada0763dd5244bf3b856da9a
|
3 |
+
size 5688
|