File size: 22,992 Bytes
3aba23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:300000
- loss:DenoisingAutoEncoderLoss
base_model: intfloat/e5-base-unsupervised
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: One mole of a substance of substance such atoms or). The is known
    or Avogadro's constant
  sentences:
  - how effective are birth control pills and pulling out?
  - can pvc be phthalate free?
  - One mole of a substance is equal to 6.022 × 10²³ units of that substance (such
    as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's
    number or Avogadro's constant.
- source_sentence: is the difference between disability broadly defined a or to be
    significantly impaired relative to the standard an individual group . To the term
    disabled still just more, this or function
  sentences:
  - 'how to open pkf format? On a Windows PC, right-click the file, click "Properties",
    then look under “Type of File.” On a Mac computer, right-click the file, click
    “More Info,” then look under “Kind”. Tip: If it''s the PKF file extension, it
    probably falls under the Audio Files type, so any program used for Audio Files
    should open your PKF file.'
  - When someone dreams you died, it means that whatever you mean to that person's
    psychological state of mind 'has ended' or 'is absent'. ... People dream of dead
    people because they miss something about them that was very strong emotionally
    present when they were there, yet is missing in their daily-life now.
  - what is the difference between disability and disabled? A disability is broadly
    defined as a condition or function judged to be significantly impaired relative
    to the usual standard of an individual or group. ... To most people today the
    term "disabled" still means just that, and, more broadly, means "unable to perform"
    this or that physical or mental function.
- source_sentence: how you contagious when
  sentences:
  - how long are you contagious when you have rsv?
  - With WiFi on your camera you establish a wireless connection between your camera
    and your phone, tablet, computer, or printer. It's also possible to connect two
    cameras with each other via WiFi. The camera has its own WiFi network that transmits
    signals.
  - So, what does it mean when a guy looks you up and down? It will often mean that
    he is checking you out especially if he only does it to you and he shows other
    signs of attraction when around you. It can also be that he is initially observing
    to see if you're a threat or that he is observing your outfit.
- source_sentence: you light east while is you can the of the . understanding The
    on left is basically fajr time black you
  sentences:
  - A future - contract to buy (or sell) something in the future. An option - right
    BUT NOT the obligation to buy (or sell) something in the future. A swap - two
    parties exchanging something at agreed points in time. This could be an exchange
    of currencies, of returns on assets, of different interest rate returns, etc..
  - can i connect my iphone to my windows laptop? You can sync an iPhone with a Windows
    10 computer wirelessly (over your local WiFi network) or via the Lightning cable.
    ... Open iTunes in Windows 10. Plug your iPhone (or iPad or iPod) into the computer
    using a Lightning cable (or older 30-pin connector). Click on Device in iTunes
    and choose your iPhone.
  - 'Yes, Fajr is when you can see the light in the east while Sunrise is when you
    can see the disk of the sun. For those who have a trouble understanding: The blue
    area on the left is basically fajr time. The black area is when you can eat.'
- source_sentence: should eat diarrhea should solid as soon able you're bottle your
    have, try to them as . at home until 48 last spreading others.
  sentences:
  - which countries were not affected by world war 2? There were eight countries that
    declared neutrality; Portugal, Switzerland, Spain, Sweden, The Vatican, Andorra,
    Ireland and Liechtenstein. However, all of these countries were still involved
    in small ways.
  - how to copy multiple cells in excel and paste?
  - how long should you wait to eat after having diarrhea? You should eat solid food
    as soon as you feel able to. If you're breastfeeding or bottle feeding your baby
    and they have diarrhoea, you should try to feed them as normal. Stay at home until
    at least 48 hours after the last episode of diarrhoea to prevent spreading any
    infection to others.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on intfloat/e5-base-unsupervised
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.7707098586060571
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7583632499035035
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7590199401674214
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.747524480818435
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.760482148803808
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7488744991502696
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5774036226110284
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5600384269062831
      name: Spearman Dot
    - type: pearson_max
      value: 0.7707098586060571
      name: Pearson Max
    - type: spearman_max
      value: 0.7583632499035035
      name: Spearman Max
---

# SentenceTransformer based on intfloat/e5-base-unsupervised

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-unsupervised](https://huggingface.co/intfloat/e5-base-unsupervised). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/e5-base-unsupervised](https://huggingface.co/intfloat/e5-base-unsupervised) <!-- at revision 6003a5b7ce770b0549203e41115b9fc683f16dad -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/E5-base-unsupervised-TSDAE")
# Run inference
sentences = [
    "should eat diarrhea should solid as soon able you're bottle your have, try to them as . at home until 48 last spreading others.",
    "how long should you wait to eat after having diarrhea? You should eat solid food as soon as you feel able to. If you're breastfeeding or bottle feeding your baby and they have diarrhoea, you should try to feed them as normal. Stay at home until at least 48 hours after the last episode of diarrhoea to prevent spreading any infection to others.",
    'how to copy multiple cells in excel and paste?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7707     |
| **spearman_cosine** | **0.7584** |
| pearson_manhattan   | 0.759      |
| spearman_manhattan  | 0.7475     |
| pearson_euclidean   | 0.7605     |
| spearman_euclidean  | 0.7489     |
| pearson_dot         | 0.5774     |
| spearman_dot        | 0.56       |
| pearson_max         | 0.7707     |
| spearman_max        | 0.7584     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 300,000 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 20.46 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 47.85 tokens</li><li>max: 132 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                         | sentence_1                                                                                                                                                                                                                                                                                                                                                 |
  |:-------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>matter An unit of retains all subatomic neutrons Hydrogen (one one neutrons</code>                           | <code>are particles of matter atoms? An atom is the smallest unit of matter that retains all of the chemical properties of an element. ... Most atoms contain all three of these types of subatomic particles—protons, electrons, and neutrons. Hydrogen (H) is an exception because it typically has one proton and one electron, but no neutrons.</code> |
  | <code>equals how</code>                                                                                            | <code>5 ml equals how many ounces?</code>                                                                                                                                                                                                                                                                                                                  |
  | <code>"A Country Boy School is poor is forced to its boy to school following official, ignoring mean a jail</code> | <code>"A Country Boy Quits School" by Lao Hsiang is an endearing social satire. It is about a poor Chinese family which is forced to send its boy to school following an official proclamation, ignoring which would mean a jail term.</code>                                                                                                              |
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 14
- `per_device_eval_batch_size`: 14
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 14
- `per_device_eval_batch_size`: 14
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step  | Training Loss | sts-test_spearman_cosine |
|:------:|:-----:|:-------------:|:------------------------:|
| 0      | 0     | -             | 0.7211                   |
| 0.0233 | 500   | 6.3144        | -                        |
| 0.0467 | 1000  | 5.3949        | -                        |
| 0.0500 | 1072  | -             | 0.6820                   |
| 0.0700 | 1500  | 5.0531        | -                        |
| 0.0933 | 2000  | 4.8547        | -                        |
| 0.1001 | 2144  | -             | 0.7126                   |
| 0.1167 | 2500  | 4.7058        | -                        |
| 0.1400 | 3000  | 4.5771        | -                        |
| 0.1501 | 3216  | -             | 0.7290                   |
| 0.1633 | 3500  | 4.4591        | -                        |
| 0.1867 | 4000  | 4.3502        | -                        |
| 0.2001 | 4288  | -             | 0.7351                   |
| 0.2100 | 4500  | 4.3071        | -                        |
| 0.2333 | 5000  | 4.2042        | -                        |
| 0.2501 | 5360  | -             | 0.7464                   |
| 0.2567 | 5500  | 4.1657        | -                        |
| 0.2800 | 6000  | 4.1111        | -                        |
| 0.3002 | 6432  | -             | 0.7492                   |
| 0.3033 | 6500  | 4.045         | -                        |
| 0.3267 | 7000  | 4.017         | -                        |
| 0.3500 | 7500  | 3.9651        | -                        |
| 0.3502 | 7504  | -             | 0.7554                   |
| 0.3733 | 8000  | 3.9199        | -                        |
| 0.3967 | 8500  | 3.8691        | -                        |
| 0.4002 | 8576  | -             | 0.7517                   |
| 0.4200 | 9000  | 3.8563        | -                        |
| 0.4433 | 9500  | 3.815         | -                        |
| 0.4502 | 9648  | -             | 0.7540                   |
| 0.4667 | 10000 | 3.7892        | -                        |
| 0.4900 | 10500 | 3.7543        | -                        |
| 0.5003 | 10720 | -             | 0.7585                   |
| 0.5133 | 11000 | 3.7391        | -                        |
| 0.5367 | 11500 | 3.7442        | -                        |
| 0.5503 | 11792 | -             | 0.7587                   |
| 0.5600 | 12000 | 3.7187        | -                        |
| 0.5833 | 12500 | 3.6855        | -                        |
| 0.6003 | 12864 | -             | 0.7572                   |
| 0.6067 | 13000 | 3.6751        | -                        |
| 0.6300 | 13500 | 3.6373        | -                        |
| 0.6503 | 13936 | -             | 0.7574                   |
| 0.6533 | 14000 | 3.6292        | -                        |
| 0.6767 | 14500 | 3.6277        | -                        |
| 0.7000 | 15000 | 3.6084        | -                        |
| 0.7004 | 15008 | -             | 0.7575                   |
| 0.7233 | 15500 | 3.6103        | -                        |
| 0.7467 | 16000 | 3.5953        | -                        |
| 0.7504 | 16080 | -             | 0.7576                   |
| 0.7700 | 16500 | 3.6232        | -                        |
| 0.7933 | 17000 | 3.5741        | -                        |
| 0.8004 | 17152 | -             | 0.7583                   |
| 0.8167 | 17500 | 3.5639        | -                        |
| 0.8400 | 18000 | 3.5667        | -                        |
| 0.8504 | 18224 | -             | 0.7589                   |
| 0.8633 | 18500 | 3.5598        | -                        |
| 0.8866 | 19000 | 3.5636        | -                        |
| 0.9005 | 19296 | -             | 0.7584                   |
| 0.9100 | 19500 | 3.5536        | -                        |
| 0.9333 | 20000 | 3.5529        | -                        |
| 0.9505 | 20368 | -             | 0.7584                   |
| 0.9566 | 20500 | 3.5485        | -                        |
| 0.9800 | 21000 | 3.5503        | -                        |
| 1.0    | 21429 | -             | 0.7584                   |


### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### DenoisingAutoEncoderLoss
```bibtex
@inproceedings{wang-2021-TSDAE,
    title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
    author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", 
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    pages = "671--688",
    url = "https://arxiv.org/abs/2104.06979",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->