File size: 5,093 Bytes
306c7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecac5e3
 
82ae7f2
494ea20
124879f
ecac5e3
494ea20
 
 
 
82ae7f2
07e760c
124879f
ecac5e3
cee265c
 
 
494ea20
306c7f2
 
 
 
 
 
 
 
 
 
 
 
 
cee265c
306c7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee265c
 
306c7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: apache-2.0
language: de
library_name: transformers
thumbnail: null
tags:
- automatic-speech-recognition
- whisper-event
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Fine-tuned whisper-large-v2 model for ASR in German
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: de
      split: test
      args: de
    metrics:
    - name: WER (Greedy)
      type: wer
      value: 5.76
---

<style>
img {
 display: inline;
}
</style>

![Model architecture](https://img.shields.io/badge/Model_Architecture-seq2seq-lightgrey)
![Model size](https://img.shields.io/badge/Params-1550M-lightgrey)
![Language](https://img.shields.io/badge/Language-German-lightgrey)

# Fine-tuned whisper-large-v2 model for ASR in German

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2), trained on the mozilla-foundation/common_voice_11_0 de dataset. When using the model make sure that your speech input is also sampled at 16Khz. **This model also predicts casing and punctuation.**

## Performance

*Below are the WERs of the pre-trained models on the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0). These results are reported in the original [paper](https://cdn.openai.com/papers/whisper.pdf).*

| Model | Common Voice 9.0 |
| --- | :---: |
| [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 13.0 |
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 8.5 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 6.4 |

*Below are the WERs of the fine-tuned models on the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).*

| Model | Common Voice 11.0 |
| --- | :---: |
| [bofenghuang/whisper-small-cv11-german](https://huggingface.co/bofenghuang/whisper-small-cv11-german) | 11.35 |
| [bofenghuang/whisper-medium-cv11-german](https://huggingface.co/bofenghuang/whisper-medium-cv11-german) | 7.05 |
| [bofenghuang/whisper-large-v2-cv11-german](https://huggingface.co/bofenghuang/whisper-large-v2-cv11-german) | **5.76** |

## Usage

Inference with 🤗 Pipeline

```python
import torch

from datasets import load_dataset
from transformers import pipeline

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load pipeline
pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-large-v2-cv11-german", device=device)

# NB: set forced_decoder_ids for generation utils
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="de", task="transcribe")

# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = test_segment["audio"]

# NB: decoding option
# limit the maximum number of generated tokens to 225
pipe.model.config.max_length = 225 + 1
# sampling
# pipe.model.config.do_sample = True
# beam search
# pipe.model.config.num_beams = 5
# return
# pipe.model.config.return_dict_in_generate = True
# pipe.model.config.output_scores = True
# pipe.model.config.num_return_sequences = 5

# Run
generated_sentences = pipe(waveform)["text"]
```

Inference with 🤗 low-level APIs

```python
import torch
import torchaudio

from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load model
model = AutoModelForSpeechSeq2Seq.from_pretrained("bofenghuang/whisper-large-v2-cv11-german").to(device)
processor = AutoProcessor.from_pretrained("bofenghuang/whisper-large-v2-cv11-german", language="german", task="transcribe")

# NB: set forced_decoder_ids for generation utils
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="de", task="transcribe")

# 16_000
model_sample_rate = processor.feature_extractor.sampling_rate

# Load data
ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "de", split="test", streaming=True)
test_segment = next(iter(ds_mcv_test))
waveform = torch.from_numpy(test_segment["audio"]["array"])
sample_rate = test_segment["audio"]["sampling_rate"]

# Resample
if sample_rate != model_sample_rate:
    resampler = torchaudio.transforms.Resample(sample_rate, model_sample_rate)
    waveform = resampler(waveform)

# Get feat
inputs = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt")
input_features = inputs.input_features
input_features = input_features.to(device)

# Generate
generated_ids = model.generate(inputs=input_features, max_new_tokens=225)  # greedy
# generated_ids = model.generate(inputs=input_features, max_new_tokens=225, num_beams=5)  # beam search

# Detokenize
generated_sentences = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

# Normalise predicted sentences if necessary
```