File size: 2,866 Bytes
09c10d8
ae58ac5
 
 
 
 
 
09c10d8
ae58ac5
 
 
09c10d8
ae58ac5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language: ru
tags:
- russian
- text-to-text
- PyTorch
- Transformers
license: apache-2.0
widget:
- text: <LM>Водка ""Русская валюта"" премиум люкс 38% 0,25л, Россия
pipeline_tag: text2text-generation
---

This is a named entity recognizer for goods and brands extraction from receipts of fiscal data operators in Russian.

It was developed for the special multi-staged competition devoted to receipt structurization. This competition was organized by [Open Data Science community](https://ods.ai) and [Alpha Bank](https://alfabank.ru), and it was consisted of [the first](https://ods.ai/competitions/nlp-receipts), [the second](https://ods.ai/competitions/alfabank-nlp-receipts-2) and [the final](https://ods.ai/competitions/alfabank-nlp-receipts-final) stage. But this model can be used for any receipt parsing and structurization in Russian. The repository with code for fine-tuning and inference is available on [gitflic.ru](https://gitflic.ru/project/bond005/ods-ner-2023).

Example of using:

```
from typing import Tuple
import torch
from transformers import T5ForConditionalGeneration, GPT2Tokenizer


MODEL_NAME = 'bond005/FRED-T5-large-ods-ner-2023'
START_TAG = '<LM>'
END_TAG = '</s>'


def initialize_recognizer(model_path: str) -> Tuple[GPT2Tokenizer, T5ForConditionalGeneration]:
    model = T5ForConditionalGeneration.from_pretrained(model_path)
    if not torch.cuda.is_available():
        raise ValueError('CUDA is not available!')
    model = model.cuda()
    model.eval()
    tokenizer = GPT2Tokenizer.from_pretrained(model_path)
    return tokenizer, model


def recognize(text: str, tokenizer: GPT2Tokenizer, model: T5ForConditionalGeneration) -> Tuple[str, str]:
    if text.startswith(START_TAG):
        x = tokenizer(text, return_tensors='pt', padding=True).to(model.device)
    else:
        x = tokenizer(START_TAG + text, return_tensors='pt', padding=True).to(model.device)
    out = model.generate(**x)
    predictions = tokenizer.decode(out[0], skip_special_tokens=True).strip()
    while predictions.endswith(END_TAG):
        predictions = predictions[:-len(END_TAG)].strip()
    prediction_pair = predictions.split(';')
    if len(prediction_pair) == 0:
        goods = ''
        brands = ''
    elif len(prediction_pair) == 1:
        goods = prediction_pair[0].strip()
        brands = ''
    else:
        goods = prediction_pair[0].strip()
        brands = prediction_pair[1].strip()
    return goods, brands


recognizer = initialize_recognizer(MODEL_NAME)

goods_and_brands = recognize(text='Водка "Русская валюта" премиум люкс 38% 0,25л, Россия',
                             tokenizer=recognizer[0], model=recognizer[1])

print(f'GOODS: {goods_and_brands[0]}')
# водка

print(f'BRANDS: {goods_and_brands[1]}')
# русская валюта
```