File size: 2,595 Bytes
28d73c4 a596460 28d73c4 97318ff 28d73c4 97318ff 28d73c4 97318ff 28d73c4 a596460 28d73c4 a596460 28d73c4 e43c337 28d73c4 a596460 28d73c4 e43c337 28d73c4 a596460 28d73c4 a596460 28d73c4 a596460 28d73c4 a596460 28d73c4 a596460 28d73c4 a596460 28d73c4 a596460 28d73c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language: en
license: apache-2.0
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
- f1
base_model: wav2vec2-base
model-index:
- name: wav2vec2-adult-child-cls
results: []
---
# Wav2Vec2 Adult/Child Speech Classifier
Wav2Vec2 Adult/Child Speech Classifier is an audio classification model based on the [wav2vec 2.0](https://arxiv.org/abs/2006.11477) architecture. This model is a fine-tuned version of [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on a private adult/child speech classification dataset.
This model was trained using HuggingFace's PyTorch framework. All training was done on a Tesla P100, provided by Kaggle. Training metrics were logged via Tensorboard.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| -------------------------- | ------- | ----------- | ----------------------------------------- |
| `wav2vec2-adult-child-cls` | 91M | wav2vec 2.0 | Adult/Child Speech Classification Dataset |
## Evaluation Results
The model achieves the following results on evaluation:
| Dataset | Loss | Accuracy | F1 |
| --------------------------------- | ------ | -------- | ------ |
| Adult/Child Speech Classification | 0.1682 | 95.80% | 0.9618 |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- `learning_rate`: 3e-05
- `train_batch_size`: 32
- `eval_batch_size`: 32
- `seed`: 42
- `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08`
- `lr_scheduler_type`: linear
- `lr_scheduler_warmup_ratio`: 0.1
- `num_epochs`: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
| :-----------: | :---: | :--: | :-------------: | :------: | :----: |
| 0.2709 | 1.0 | 384 | 0.2616 | 0.9104 | 0.9142 |
| 0.2112 | 2.0 | 768 | 0.1826 | 0.9386 | 0.9421 |
| 0.1755 | 3.0 | 1152 | 0.1898 | 0.9354 | 0.9428 |
| 0.0915 | 4.0 | 1536 | 0.1682 | 0.9580 | 0.9618 |
| 0.1042 | 5.0 | 1920 | 0.1717 | 0.9511 | 0.9554 |
## Disclaimer
Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
## Authors
Wav2Vec2 Adult/Child Speech Classifier was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Kaggle.
## Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.10.3
|