Boris Dayma commited on
Commit
f20354f
1 Parent(s): a3b8eac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -16
README.md CHANGED
@@ -8,7 +8,6 @@ tags:
8
  - audio
9
  - automatic-speech-recognition
10
  - speech
11
- - xlsr-fine-tuning-week
12
  license: apache-2.0
13
  model-index:
14
  - name: English XLSR Wav2Vec2 Large 53 with punctuation
@@ -51,15 +50,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
- speech_array, sampling_rate = torchaudio.load(batch["path"])
55
- batch["speech"] = resampler(speech_array).squeeze().numpy()
56
- return batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
@@ -87,30 +86,30 @@ processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {mode
87
  model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
88
  model.to("cuda")
89
 
90
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
91
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
92
 
93
  # Preprocessing the datasets.
94
  # We need to read the aduio files as arrays
95
  def speech_file_to_array_fn(batch):
96
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
97
- speech_array, sampling_rate = torchaudio.load(batch["path"])
98
- batch["speech"] = resampler(speech_array).squeeze().numpy()
99
- return batch
100
 
101
  test_dataset = test_dataset.map(speech_file_to_array_fn)
102
 
103
  # Preprocessing the datasets.
104
  # We need to read the aduio files as arrays
105
  def evaluate(batch):
106
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
107
 
108
- with torch.no_grad():
109
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
110
 
111
- pred_ids = torch.argmax(logits, dim=-1)
112
- batch["pred_strings"] = processor.batch_decode(pred_ids)
113
- return batch
114
 
115
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
116
 
 
8
  - audio
9
  - automatic-speech-recognition
10
  - speech
 
11
  license: apache-2.0
12
  model-index:
13
  - name: English XLSR Wav2Vec2 Large 53 with punctuation
 
50
  # Preprocessing the datasets.
51
  # We need to read the aduio files as arrays
52
  def speech_file_to_array_fn(batch):
53
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
54
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
55
+ \treturn batch
56
 
57
  test_dataset = test_dataset.map(speech_file_to_array_fn)
58
  inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
59
 
60
  with torch.no_grad():
61
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
 
63
  predicted_ids = torch.argmax(logits, dim=-1)
64
 
 
86
  model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
87
  model.to("cuda")
88
 
89
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data
90
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
 
92
  # Preprocessing the datasets.
93
  # We need to read the aduio files as arrays
94
  def speech_file_to_array_fn(batch):
95
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
96
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
97
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
98
+ \treturn batch
99
 
100
  test_dataset = test_dataset.map(speech_file_to_array_fn)
101
 
102
  # Preprocessing the datasets.
103
  # We need to read the aduio files as arrays
104
  def evaluate(batch):
105
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
106
 
107
+ \twith torch.no_grad():
108
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
109
 
110
+ \tpred_ids = torch.argmax(logits, dim=-1)
111
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
112
+ \treturn batch
113
 
114
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
115