File size: 15,118 Bytes
d48f2bf
 
dcb9a53
 
d48f2bf
 
dcb9a53
 
 
 
 
 
 
a545a4b
dcb9a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96e2c72
dcb9a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96e2c72
 
 
 
 
 
 
 
 
 
 
 
 
dcb9a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96e2c72
dcb9a53
 
 
 
 
 
 
96e2c72
 
 
 
 
 
 
 
 
 
 
 
 
dcb9a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d48f2bf
 
a477325
d48f2bf
00ca6e1
d48f2bf
d474da6
d48f2bf
 
 
 
 
 
 
 
 
 
 
d474da6
d48f2bf
d474da6
 
 
 
 
d48f2bf
 
 
 
 
 
 
 
d474da6
d48f2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb9a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
---
language:
- pt
- en
license: cc
tags:
- text-generation-inference
- transformers
- mistral
- gguf
- brazil
- brasil
- portuguese
metrics:
- name: assin2_rte f1_macro
  type: assin2_rte
  value: 90.13
- name: assin2_rte acc
  type: assin2_rte
  value: 90.16
- name: assin2_sts pearson
  type: assin2_sts
  value: 71.51
- name: assin2_sts mse
  type: assin2_sts
  value: 68.03
- name: bluex acc
  type: bluex
  value: 47.98
- name: enem acc
  type: enem
  value: 58.43
- name: faquad_nli f1_macro
  type: faquad_nli
  value: 64.24
- name: faquad_nli acc
  type: faquad_nli
  value: 67.69
- name: hatebr_offensive_binary f1_macro
  type: hatebr_offensive_binary
  value: 83.61
- name: hatebr_offensive_binary acc
  type: hatebr_offensive_binary
  value: 83.71
- name: oab_exams acc
  type: oab_exams
  value: 38.41
- name: portuguese_hate_speech_binary f1_macro
  type: portuguese_hate_speech_binary
  value: 61.87
- name: portuguese_hate_speech_binary acc
  type: portuguese_hate_speech_binary
  value: 63.22
base_model: mistralai/Mistral-7B-Instruct-v0.2
pipeline_tag: text-generation
model-index:
- name: CabraMistral7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 60.81
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 46.87
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 38.59
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 90.27
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 72.25
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 64.35
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 83.15
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 64.82
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia-temp/tweetsentbr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 64.8
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicolasdec/CabraMistral7b
      name: Open Portuguese LLM Leaderboard
---
# Cabra Mistral 7b v2
<img src="https://uploads-ssl.webflow.com/65f77c0240ae1c68f8192771/660b1a4d574293d8a1ce48ca_cabra1.png" width="400" height="400">

Esse modelo é um finetune do [Mistral 7b Instruct 0.2](https://huggingface.co/mistralai/mistral-7b-instruct-v0.2) com o dataset interno Cabra 10k. Esse modelo é optimizado para português. Ele apresenta melhoria em varios benchmarks brasileiros em comparação com o modelo base.   

**Conheça os nossos outros modelos: [Cabra](https://huggingface.co/collections/botbot-ai/models-6604c2069ceef04f834ba99b).**

## Detalhes do Modelo

### Modelo: Mistral 7b Instruct 0.2

Mistral-7B-v0.1 é um modelo de transformador, com as seguintes escolhas arquitetônicas:

- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer

### dataset: Cabra 10k

Dataset interno para finetuning. Vamos lançar em breve. 

### Quantização / GGUF

Colocamos diversas versões (GGUF) quantanizadas no branch "quantanization". 

### Exemplo

```
<s> [INST] who is Elon Musk? [/INST]Elon Musk é um empreendedor, inventor e capitalista americano. Ele é o fundador, CEO e CTO da SpaceX, CEO da Neuralink e fundador do The Boring Company. Musk também é o proprietário do Twitter.</s>

```

### Paramentros de trainamento

```
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 3
```

### Framework

- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.2

## Uso
O modelo é destinado, por agora, a fins de pesquisa. As áreas e tarefas de pesquisa possíveis incluem:

- Pesquisa sobre modelos gerativos.
- Investigação e compreensão das limitações e viéses de modelos gerativos.

**Proibido para uso comercial. Somente Pesquisa.**

### Evals

| Tasks                       | Version | Filter               | n-shot | Metric   | Value  | Stderr  |
|-----------------------------|---------|----------------------|--------|----------|--------|---------|
| assin2_rte                  | 1.1     | all                  | 15     | f1_macro | 0.9013 | ± 0.0043 |
|                             |         | all                  | 15     | acc      | 0.9016 | ± 0.0043 |
| assin2_sts                  | 1.1     | all                  | 15     | pearson  | 0.7151 | ± 0.0074 |
|                             |         | all                  | 15     | mse      | 0.6803 | ± N/A    |
| bluex                       | 1.1     | all                  | 3      | acc      | 0.4798 | ± 0.0107 |
|                             |         | exam_id__USP_2019    | 3      | acc      | 0.375  | ± 0.044  |
|                             |         | exam_id__USP_2021    | 3      | acc      | 0.3462 | ± 0.0382 |
|                             |         | exam_id__USP_2020    | 3      | acc      | 0.4107 | ± 0.0379 |
|                             |         | exam_id__UNICAMP_2018| 3      | acc      | 0.4815 | ± 0.0392 |
|                             |         | exam_id__UNICAMP_2020| 3      | acc      | 0.4727 | ± 0.0389 |
|                             |         | exam_id__UNICAMP_2021_1| 3    | acc      | 0.413  | ± 0.0418 |
|                             |         | exam_id__UNICAMP_2019| 3      | acc      | 0.42   | ± 0.0404 |
|                             |         | exam_id__UNICAMP_2022| 3      | acc      | 0.5897 | ± 0.0456 |
|                             |         | exam_id__USP_2022    | 3      | acc      | 0.449  | ± 0.041  |
|                             |         | exam_id__USP_2024    | 3      | acc      | 0.6341 | ± 0.0434 |
|                             |         | exam_id__UNICAMP_2024| 3      | acc      | 0.6    | ± 0.0422 |
|                             |         | exam_id__USP_2023    | 3      | acc      | 0.5455 | ± 0.0433 |
|                             |         | exam_id__UNICAMP_2023| 3      | acc      | 0.5349 | ± 0.044  |
|                             |         | exam_id__USP_2018    | 3      | acc      | 0.4815 | ± 0.0393 |
|                             |         | exam_id__UNICAMP_2021_2| 3    | acc      | 0.5098 | ± 0.0403 |
| enem                        | 1.1     | all                  | 3      | acc      | 0.5843 | ± 0.0075 |
|                             |         | exam_id__2010        | 3      | acc      | 0.5726 | ± 0.0264 |
|                             |         | exam_id__2009        | 3      | acc      | 0.6    | ± 0.0264 |
|                             |         | exam_id__2014        | 3      | acc      | 0.633  | ± 0.0268 |
|                             |         | exam_id__2022        | 3      | acc      | 0.6165 | ± 0.0243 |
|                             |         | exam_id__2012        | 3      | acc      | 0.569  | ± 0.0265 |
|                             |         | exam_id__2013        | 3      | acc      | 0.5833 | ± 0.0274 |
|                             |         | exam_id__2016_2      | 3      | acc      | 0.5203 | ± 0.026  |
|                             |         | exam_id__2011        | 3      | acc      | 0.6325 | ± 0.0257 |
|                             |         | exam_id__2023        | 3      | acc      | 0.5778 | ± 0.0246 |
|                             |         | exam_id__2016        | 3      | acc      | 0.595  | ± 0.0258 |
|                             |         | exam_id__2017        | 3      | acc      | 0.5517 | ± 0.0267 |
|                             |         | exam_id__2015        | 3      | acc      | 0.563  | ± 0.0261 |
| faquad_nli                  | 1.1     | all                  | 15     | f1_macro | 0.6424 | ± 0.0138 |
|                             |         | all                  | 15     | acc      | 0.6769 | ± 0.013  |
| hatebr_offensive_binary     | 1       | all                  | 25     | f1_macro | 0.8361 | ± 0.007  |
|                             |         | all                  | 25     | acc      | 0.8371 | ± 0.007  |
| oab_exams                   | 1.5     | all                  | 3      | acc      | 0.3841 | ± 0.006  |
|                             |         | exam_id__2011-03     | 3      | acc      | 0.3636 | ± 0.0279 |
|                             |         | exam_id__2014-14     | 3      | acc      | 0.475  | ± 0.0323 |
|                             |         | exam_id__2016-21     | 3      | acc      | 0.4125 | ± 0.0318 |
|                             |         | exam_id__2012-06a    | 3      | acc      | 0.3875 | ± 0.0313 |
|                             |         | exam_id__2014-13     | 3      | acc      | 0.325  | ± 0.0303 |
|                             |         | exam_id__2015-16     | 3      | acc      | 0.425  | ± 0.032  |
|                             |         | exam_id__2010-02     | 3      | acc      | 0.4    | ± 0.0283 |
|                             |         | exam_id__2012-08     | 3      | acc      | 0.3875 | ± 0.0314 |
|                             |         | exam_id__2011-05     | 3      | acc      | 0.375  | ± 0.0312 |
|                             |         | exam_id__2017-22     | 3      | acc      | 0.4    | ± 0.0316 |
|                             |         | exam_id__2018-25     | 3      | acc      | 0.4125 | ± 0.0318 |
|                             |         | exam_id__2012-09     | 3      | acc      | 0.3636 | ± 0.0317 |
|                             |         | exam_id__2017-24     | 3      | acc      | 0.3375 | ± 0.0304 |
|                             |         | exam_id__2016-20a    | 3      | acc      | 0.3125 | ± 0.0299 |
|                             |         | exam_id__2012-06     | 3      | acc      | 0.425  | ± 0.0318 |
|                             |         | exam_id__2013-12     | 3      | acc      | 0.4375 | ± 0.0321 |
|                             |         | exam_id__2016-20     | 3      | acc      | 0.45   | ± 0.0322 |
|                             |         | exam_id__2013-11     | 3      | acc      | 0.4    | ± 0.0316 |
|                             |         | exam_id__2015-17     | 3      | acc      | 0.4231 | ± 0.0323 |
|                             |         | exam_id__2015-18     | 3      | acc      | 0.4    | ± 0.0316 |
|                             |         | exam_id__2017-23     | 3      | acc      | 0.35   | ± 0.0308 |
|                             |         | exam_id__2010-01     | 3      | acc      | 0.2471 | ± 0.0271 |
|                             |         | exam_id__2011-04     | 3      | acc      | 0.375  | ± 0.0313 |
|                             |         | exam_id__2016-19     | 3      | acc      | 0.4103 | ± 0.0321 |
|                             |         | exam_id__2013-10     | 3      | acc      | 0.3375 | ± 0.0305 |
|                             |         | exam_id__2012-07     | 3      | acc      | 0.3625 | ± 0.031  |
|                             |         | exam_id__2014-15     | 3      | acc      | 0.3846 | ± 0.0318 |
| portuguese_hate_speech_binary | 1    | all                  | 25     | f1_macro | 0.6187 | ± 0.0119 |
|                             |         | all                  | 25     | acc      | 0.6322 | ± 0.0117 |


# [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/nicolasdec/CabraMistral7b)

|          Metric          | Value  |
|--------------------------|--------|
|Average                   |**65.1**|
|ENEM Challenge (No Images)|   60.81|
|BLUEX (No Images)         |   46.87|
|OAB Exams                 |   38.59|
|Assin2 RTE                |   90.27|
|Assin2 STS                |   72.25|
|FaQuAD NLI                |   64.35|
|HateBR Binary             |   83.15|
|PT Hate Speech Binary     |   64.82|
|tweetSentBR               |   64.80|