File size: 2,345 Bytes
361f4f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562209c
361f4f3
3128428
361f4f3
562209c
eded877
 
 
8d4d84c
eded877
55e7045
eded877
 
 
8d4d84c
eded877
dc50ea5
eded877
dc50ea5
9343b4d
 
5ee2a89
562209c
 
 
5ee2a89
37daef4
361f4f3
 
163eb69
361f4f3
 
 
 
 
 
 
3128428
 
361f4f3
 
 
 
 
 
 
 
 
 
 
f0b89f3
361f4f3
 
 
 
 
2e5002b
a825c09
 
f0b89f3
361f4f3
bda656c
dc50ea5
eded877
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language: ary
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Boumehdi
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    metrics:
       - name: Test WER
         type: wer
         value: 0.213403
---
# Wav2Vec2-Large-XLSR-53-Moroccan-Darija

**wav2vec2-large-xlsr-53** fine-tuned on 29 hours (29 people) of labeled Darija Audios.

# Old model vs new model

<u>Old Model:</u>
- The model contains numerous incorrect transcriptions as input
- Multiple transcribers.
- The audio database is not organized (by gender, age, regions ..).
- Wrong wer rate

<u>New Model:</u>
- Transcriptions are now performed by a single individual.
- Each hour of audio is pronounced by a different person.
- Fine-tuning is ongoing 24/7 to enhance accuracy, and we are consistently adding more data to the model every day.
- Audio database is more organized
- True Wer rate

<table><thead><tr><th><strong>Training Loss</strong></th> <th><strong>Validation</strong></th> <th><strong>Loss Wer</strong></th></tr></thead> <tbody><tr>
<td>0.021200</td>
<td>0.320633</td>
<td>0.213403</td>
</tr> </tbody></table>

## Usage

The model can be used directly as follows:

```python
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer

tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija')


# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)

# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values

# retrieve logits
logits = model(input_values).logits

tokens = torch.argmax(logits, axis=-1)

# decode using n-gram
transcription = tokenizer.batch_decode(tokens)

# print the output
print(transcription)
```

Output: قالت ليا هاد السيد هادا ما كاينش بحالو 

email: [email protected]

BOUMEHDI Ahmed