File size: 3,017 Bytes
7a295b6
 
 
 
 
 
 
 
 
a681a36
7a295b6
 
 
 
 
a681a36
7a295b6
 
 
 
 
a681a36
7a295b6
a681a36
 
7a295b6
a681a36
890b56e
 
 
 
 
 
 
 
 
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
a681a36
890b56e
7a295b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-emotion
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      args: default
    metrics:
    - type: accuracy
      value: 0.925
      name: Accuracy
    - type: f1
      value: 0.925169929474641
      name: F1
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: emotion
      type: emotion
      config: default
      split: test
    metrics:
    - type: accuracy
      value: 0.9185
      name: Accuracy
      verified: true
    - type: precision
      value: 0.8812304360487162
      name: Precision Macro
      verified: true
    - type: precision
      value: 0.9185
      name: Precision Micro
      verified: true
    - type: precision
      value: 0.9186256759712246
      name: Precision Weighted
      verified: true
    - type: recall
      value: 0.8685675449036236
      name: Recall Macro
      verified: true
    - type: recall
      value: 0.9185
      name: Recall Micro
      verified: true
    - type: recall
      value: 0.9185
      name: Recall Weighted
      verified: true
    - type: f1
      value: 0.8737330835692586
      name: F1 Macro
      verified: true
    - type: f1
      value: 0.9185
      name: F1 Micro
      verified: true
    - type: f1
      value: 0.9182854700791021
      name: F1 Weighted
      verified: true
    - type: loss
      value: 0.2216690629720688
      name: loss
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2202
- Accuracy: 0.925
- F1: 0.9252

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8419        | 1.0   | 250  | 0.3236          | 0.9025   | 0.8999 |
| 0.258         | 2.0   | 500  | 0.2202          | 0.925    | 0.9252 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1