from skimage import io | |
import torch, os | |
from PIL import Image | |
from briarmbg import BriaRMBG | |
from utilities import preprocess_image, postprocess_image | |
from huggingface_hub import hf_hub_download | |
def example_inference(): | |
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg" | |
net = BriaRMBG() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
net = BriaRMBG.from_pretrained("briaai/RMBG-1.4") | |
net.to(device) | |
net.eval() | |
# prepare input | |
model_input_size = [1024,1024] | |
orig_im = io.imread(im_path) | |
orig_im_size = orig_im.shape[0:2] | |
image = preprocess_image(orig_im, model_input_size).to(device) | |
# inference | |
result=net(image) | |
# post process | |
result_image = postprocess_image(result[0][0], orig_im_size) | |
# save result | |
pil_mask_im = Image.fromarray(result_image) | |
orig_image = Image.open(im_path) | |
no_bg_image = orig_image.copy() | |
no_bg_image.putalpha(pil_mask_im) | |
no_bg_image.save("example_image_no_bg.png") | |
if __name__ == "__main__": | |
example_inference() |