File size: 5,168 Bytes
959dda5 30a4470 959dda5 9facff9 959dda5 ae0645c 959dda5 79cdc47 5d25beb 959dda5 30a4470 5d25beb 30a4470 5d9c173 30a4470 b9a22a2 15efb78 644691a 30a4470 94cba2d 46213db e9e6afb 30a4470 e9e6afb 959dda5 62f92ff 959dda5 5d9c173 959dda5 62f92ff 959dda5 1ea5224 959dda5 50bce24 959dda5 50bce24 959dda5 30a4470 50bce24 30a4470 959dda5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
license: other
license_name: bria-rmbg-2.0
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
pipeline_tag: image-segmentation
tags:
- remove background
- background
- background-removal
- Pytorch
- vision
- legal liability
- transformers
---
# BRIA Background Removal v2.0 Model Card
RMBG v2.0 is our new state-of-the-art background removal model significantly improves RMBG v1.4. The model is designed to effectively separate foreground from background in a range of
categories and image types. This model has been trained on a carefully selected dataset, which includes:
general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale.
The accuracy, efficiency, and versatility currently rival leading source-available models.
It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount.
Developed by BRIA AI, RMBG v2.0 is available as a source-available model for non-commercial use.
**Purchase:** to purchase a commercial license simply click [Here](https://go.bria.ai/3D5EGp0).
[CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-RMBG-2.0)
Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users!
![examples](t4.png)
## Model Details
#####
### Model Description
- **Developed by:** [BRIA AI](https://bria.ai/)
- **Model type:** Background Removal
- **License:** [bria-rmbg-2.0](https://bria.ai/bria-huggingface-model-license-agreement/)
- The model is released under a Creative Commons license for non-commercial use.
- Commercial use is subject to a commercial agreement with BRIA.
**Purchase:** to purchase a commercial license simply click [Here](https://go.bria.ai/3D5EGp0).
- **Model Description:** BRIA RMBG-2.0 is a dichotomous image segmentation model trained exclusively on a professional-grade dataset.
- **BRIA:** Resources for more information: [BRIA AI](https://bria.ai/)
## Training data
Bria-RMBG model was trained with over 15,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images.
Our benchmark included balanced gender, balanced ethnicity, and people with different types of disabilities.
For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.
### Distribution of images:
| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Objects only | 45.11% |
| People with objects/animals | 25.24% |
| People only | 17.35% |
| people/objects/animals with text | 8.52% |
| Text only | 2.52% |
| Animals only | 1.89% |
| Category | Distribution |
| -----------------------------------| -----------------------------------------:|
| Photorealistic | 87.70% |
| Non-Photorealistic | 12.30% |
| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Non Solid Background | 52.05% |
| Solid Background | 47.95%
| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Single main foreground object | 51.42% |
| Multiple objects in the foreground | 48.58% |
## Qualitative Evaluation
Open source models comparison
![diagram](diagram1.png)
![examples](collage5.png)
### Architecture
RMBG-2.0 is developed on the [BiRefNet](https://github.com/ZhengPeng7/BiRefNet) architecture enhanced with our proprietary dataset and training scheme. This training data significantly improves the model’s accuracy and effectiveness for background-removal task.<br>
If you use this model in your research, please cite:
```
@article{BiRefNet,
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
journal={CAAI Artificial Intelligence Research},
year={2024}
}
```
#### Requirements
```bash
torch
torchvision
pillow
kornia
transformers
```
### Usage
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
```python
from PIL import Image
import matplotlib.pyplot as plt
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True)
torch.set_float32_matmul_precision(['high', 'highest'][0])
model.to('cuda')
model.eval()
# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image = Image.open(input_image_path)
input_images = transform_image(image).unsqueeze(0).to('cuda')
# Prediction
with torch.no_grad():
preds = model(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)
image.save("no_bg_image.png")
```
|