Ajmalps commited on
Commit
afcd7bb
·
1 Parent(s): 7c65c42

initial push

Browse files
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "budecosystem/boomer-bitnet-634m",
3
+ "architectures": [
4
+ "BoomerForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_boomer.BoomerConfig",
10
+ "AutoModelForCausalLM": "modelling_boomer.BoomerForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 1024,
16
+ "initializer_range": 0.02,
17
+ "input_bits": 8,
18
+ "intermediate_size": 2560,
19
+ "max_position_embeddings": 4096,
20
+ "model_type": "boomer",
21
+ "num_attention_heads": 16,
22
+ "num_hidden_layers": 48,
23
+ "num_key_value_heads": 4,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 1000000.0,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.39.2",
31
+ "use_cache": false,
32
+ "vocab_size": 64000,
33
+ "weight_bits": 1
34
+ }
configuration_boomer.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class BoomerConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`BoomerModel`]. It is used to instantiate an LLaMA
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the LLaMA-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`BoomerModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with.
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ pad_token_id (`int`, *optional*):
73
+ Padding token id.
74
+ bos_token_id (`int`, *optional*, defaults to 1):
75
+ Beginning of stream token id.
76
+ eos_token_id (`int`, *optional*, defaults to 2):
77
+ End of stream token id.
78
+ pretraining_tp (`int`, *optional*, defaults to 1):
79
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
80
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
81
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
82
+ issue](https://github.com/pytorch/pytorch/issues/76232).
83
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
84
+ Whether to tie weight embeddings
85
+ rope_theta (`float`, *optional*, defaults to 10000.0):
86
+ The base period of the RoPE embeddings.
87
+ rope_scaling (`Dict`, *optional*):
88
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
89
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
90
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
91
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
92
+ these scaling strategies behave:
93
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
94
+ experimental feature, subject to breaking API changes in future versions.
95
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
96
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
97
+ attention_dropout (`float`, *optional*, defaults to 0.0):
98
+ The dropout ratio for the attention probabilities.
99
+
100
+ ```python
101
+ >>> from transformers import BoomerModel, BoomerConfig
102
+
103
+ >>> # Initializing a LLaMA llama-7b style configuration
104
+ >>> configuration = BoomerConfig()
105
+
106
+ >>> # Initializing a model from the llama-7b style configuration
107
+ >>> model = BoomerModel(configuration)
108
+
109
+ >>> # Accessing the model configuration
110
+ >>> configuration = model.config
111
+ ```"""
112
+
113
+ model_type = "llama"
114
+ keys_to_ignore_at_inference = ["past_key_values"]
115
+
116
+ def __init__(
117
+ self,
118
+ vocab_size=32000,
119
+ hidden_size=4096,
120
+ intermediate_size=11008,
121
+ num_hidden_layers=32,
122
+ num_attention_heads=32,
123
+ num_key_value_heads=None,
124
+ hidden_act="silu",
125
+ max_position_embeddings=2048,
126
+ initializer_range=0.02,
127
+ rms_norm_eps=1e-6,
128
+ use_cache=True,
129
+ pad_token_id=None,
130
+ bos_token_id=1,
131
+ eos_token_id=2,
132
+ pretraining_tp=1,
133
+ tie_word_embeddings=False,
134
+ rope_theta=10000.0,
135
+ rope_scaling=None,
136
+ attention_bias=False,
137
+ attention_dropout=0.0,
138
+ weight_bits=1,
139
+ input_bits=8,
140
+ **kwargs,
141
+ ):
142
+ self.vocab_size = vocab_size
143
+ self.max_position_embeddings = max_position_embeddings
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ # for backward compatibility
150
+ if num_key_value_heads is None:
151
+ num_key_value_heads = num_attention_heads
152
+
153
+ self.num_key_value_heads = num_key_value_heads
154
+ self.hidden_act = hidden_act
155
+ self.initializer_range = initializer_range
156
+ self.rms_norm_eps = rms_norm_eps
157
+ self.pretraining_tp = pretraining_tp
158
+ self.use_cache = use_cache
159
+ self.rope_theta = rope_theta
160
+ self.rope_scaling = rope_scaling
161
+ self._rope_scaling_validation()
162
+ self.attention_bias = attention_bias
163
+ self.attention_dropout = attention_dropout
164
+ self.weight_bits = weight_bits
165
+ self.input_bits = input_bits
166
+
167
+ super().__init__(
168
+ pad_token_id=pad_token_id,
169
+ bos_token_id=bos_token_id,
170
+ eos_token_id=eos_token_id,
171
+ tie_word_embeddings=tie_word_embeddings,
172
+ **kwargs,
173
+ )
174
+
175
+ def _rope_scaling_validation(self):
176
+ """
177
+ Validate the `rope_scaling` configuration.
178
+ """
179
+ if self.rope_scaling is None:
180
+ return
181
+
182
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
183
+ raise ValueError(
184
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
185
+ f"got {self.rope_scaling}"
186
+ )
187
+ rope_scaling_type = self.rope_scaling.get("type", None)
188
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
189
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
190
+ raise ValueError(
191
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
192
+ )
193
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
194
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.39.2"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef4774e0a5faade38cfbbb577f612139cfae17b1bcdd809883176e1d1d165286
3
+ size 1269388584
modelling_boomer.py ADDED
@@ -0,0 +1,1429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch LLaMA model."""
21
+
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
34
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
35
+ from transformers.modeling_outputs import (
36
+ BaseModelOutputWithPast,
37
+ CausalLMOutputWithPast,
38
+ QuestionAnsweringModelOutput,
39
+ SequenceClassifierOutputWithPast,
40
+ )
41
+ from transformers.modeling_utils import PreTrainedModel
42
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
43
+ from transformers.utils import (
44
+ add_start_docstrings,
45
+ add_start_docstrings_to_model_forward,
46
+ is_flash_attn_2_available,
47
+ is_flash_attn_greater_or_equal_2_10,
48
+ logging,
49
+ replace_return_docstrings,
50
+ )
51
+ from .configuration_boomer import BoomerConfig
52
+
53
+ if is_flash_attn_2_available():
54
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
55
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
56
+
57
+
58
+ logger = logging.get_logger(__name__)
59
+
60
+ _CONFIG_FOR_DOC = "BoomerConfig"
61
+
62
+
63
+ def _get_unpad_data(attention_mask):
64
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
65
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
66
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
67
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
68
+ return (
69
+ indices,
70
+ cu_seqlens,
71
+ max_seqlen_in_batch,
72
+ )
73
+
74
+ def weight_quant(weight, num_bits=1):
75
+ dtype = weight.dtype
76
+ weight = weight.float()
77
+ s = 1 / weight.abs().mean().clamp(min=1e-5)
78
+ result = (weight * s).round().clamp(-1, 1) / s
79
+ return result.type(dtype)
80
+
81
+
82
+ def activation_quant(x, num_bits=8):
83
+ dtype = x.dtype
84
+ x = x.float()
85
+ Qn = -2 ** (num_bits - 1)
86
+ Qp = 2 ** (num_bits - 1) - 1
87
+ s = Qp / x.abs().max(dim=-1, keepdim=True).values.clamp(min=1e-5)
88
+ result = (x * s).round().clamp(Qn, Qp) / s
89
+ return result.type(dtype)
90
+
91
+
92
+ class BitLinear(nn.Linear):
93
+
94
+ def __init__(self,
95
+ *kargs,
96
+ weight_bits=1,
97
+ input_bits=8,
98
+ **kwargs
99
+ ):
100
+ super(BitLinear, self).__init__(*kargs, **kwargs)
101
+ """
102
+ RMSNorm is placed outside BitLinear
103
+ """
104
+ self.weight_bits = weight_bits
105
+ self.input_bits = input_bits
106
+
107
+ def forward(self, input):
108
+
109
+ quant_input = input + (activation_quant(input, self.input_bits) - input).detach()
110
+ quant_weight = self.weight + (weight_quant(self.weight, self.weight_bits) - self.weight).detach()
111
+
112
+ out = nn.functional.linear(quant_input, quant_weight)
113
+ if not self.bias is None:
114
+ out += self.bias.view(1, -1).expand_as(out)
115
+
116
+ return out
117
+
118
+
119
+ class BoomerRMSNorm(nn.Module):
120
+ def __init__(self, hidden_size, eps=1e-6):
121
+ """
122
+ BoomerRMSNorm is equivalent to T5LayerNorm
123
+ """
124
+ super().__init__()
125
+ self.weight = nn.Parameter(torch.ones(hidden_size))
126
+ self.variance_epsilon = eps
127
+
128
+ def forward(self, hidden_states):
129
+ input_dtype = hidden_states.dtype
130
+ hidden_states = hidden_states.to(torch.float32)
131
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
132
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
133
+ return self.weight * hidden_states.to(input_dtype)
134
+
135
+
136
+ ALL_LAYERNORM_LAYERS.append(BoomerRMSNorm)
137
+
138
+
139
+ class BoomerRotaryEmbedding(nn.Module):
140
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
141
+ super().__init__()
142
+ self.scaling_factor = scaling_factor
143
+ self.dim = dim
144
+ self.max_position_embeddings = max_position_embeddings
145
+ self.base = base
146
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
147
+ self.register_buffer("inv_freq", inv_freq)
148
+ # For BC we register cos and sin cached
149
+ self.max_seq_len_cached = max_position_embeddings
150
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
151
+ t = t / self.scaling_factor
152
+ freqs = torch.outer(t, self.inv_freq)
153
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
154
+ emb = torch.cat((freqs, freqs), dim=-1)
155
+ self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
156
+ self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
157
+
158
+ @property
159
+ def sin_cached(self):
160
+ logger.warning_once(
161
+ "The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
162
+ "the forward method of RoPE from now on instead. It is not used in the `BoomerAttention` class"
163
+ )
164
+ return self._sin_cached
165
+
166
+ @property
167
+ def cos_cached(self):
168
+ logger.warning_once(
169
+ "The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
170
+ "the forward method of RoPE from now on instead. It is not used in the `BoomerAttention` class"
171
+ )
172
+ return self._cos_cached
173
+
174
+ @torch.no_grad()
175
+ def forward(self, x, position_ids):
176
+ # x: [bs, num_attention_heads, seq_len, head_size]
177
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
178
+ position_ids_expanded = position_ids[:, None, :].float()
179
+ # Force float32 since bfloat16 loses precision on long contexts
180
+ # See https://github.com/huggingface/transformers/pull/29285
181
+ device_type = x.device.type
182
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
183
+ with torch.autocast(device_type=device_type, enabled=False):
184
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
185
+ emb = torch.cat((freqs, freqs), dim=-1)
186
+ cos = emb.cos()
187
+ sin = emb.sin()
188
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
189
+
190
+
191
+ def rotate_half(x):
192
+ """Rotates half the hidden dims of the input."""
193
+ x1 = x[..., : x.shape[-1] // 2]
194
+ x2 = x[..., x.shape[-1] // 2 :]
195
+ return torch.cat((-x2, x1), dim=-1)
196
+
197
+
198
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
199
+ """Applies Rotary Position Embedding to the query and key tensors.
200
+
201
+ Args:
202
+ q (`torch.Tensor`): The query tensor.
203
+ k (`torch.Tensor`): The key tensor.
204
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
205
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
206
+ position_ids (`torch.Tensor`, *optional*):
207
+ Deprecated and unused.
208
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
209
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
210
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
211
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
212
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
213
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
214
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
215
+ Returns:
216
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
217
+ """
218
+ cos = cos.unsqueeze(unsqueeze_dim)
219
+ sin = sin.unsqueeze(unsqueeze_dim)
220
+ q_embed = (q * cos) + (rotate_half(q) * sin)
221
+ k_embed = (k * cos) + (rotate_half(k) * sin)
222
+ return q_embed, k_embed
223
+
224
+
225
+ class BoomerMLP(nn.Module):
226
+ def __init__(self, config):
227
+ super().__init__()
228
+ self.config = config
229
+ self.hidden_size = config.hidden_size
230
+ self.intermediate_size = config.intermediate_size
231
+ self.gate_proj = BitLinear(
232
+ self.hidden_size, self.intermediate_size, bias=False,
233
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
234
+ )
235
+ self.up_proj = BitLinear(
236
+ self.hidden_size, self.intermediate_size, bias=False,
237
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
238
+ )
239
+ self.down_proj = BitLinear(
240
+ self.intermediate_size, self.hidden_size, bias=False,
241
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
242
+ )
243
+ self.act_fn = ACT2FN[config.hidden_act]
244
+ self.ffn_layernorm = BoomerRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)
245
+
246
+ def forward(self, x):
247
+ x = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
248
+ x = self.ffn_layernorm(x)
249
+ x = self.down_proj(x)
250
+ return x
251
+
252
+
253
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
254
+ """
255
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
256
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
257
+ """
258
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
259
+ if n_rep == 1:
260
+ return hidden_states
261
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
262
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
263
+
264
+
265
+ class BoomerAttention(nn.Module):
266
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
267
+
268
+ def __init__(self, config: BoomerConfig, layer_idx: Optional[int] = None):
269
+ super().__init__()
270
+ self.config = config
271
+ self.layer_idx = layer_idx
272
+ if layer_idx is None:
273
+ logger.warning_once(
274
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
275
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
276
+ "when creating this class."
277
+ )
278
+
279
+ self.attention_dropout = config.attention_dropout
280
+ self.hidden_size = config.hidden_size
281
+ self.num_heads = config.num_attention_heads
282
+ self.head_dim = self.hidden_size // self.num_heads
283
+ self.num_key_value_heads = config.num_key_value_heads
284
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
285
+ self.max_position_embeddings = config.max_position_embeddings
286
+ self.rope_theta = config.rope_theta
287
+ self.is_causal = True
288
+
289
+ if (self.head_dim * self.num_heads) != self.hidden_size:
290
+ raise ValueError(
291
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
292
+ f" and `num_heads`: {self.num_heads})."
293
+ )
294
+
295
+ self.q_proj = BitLinear(
296
+ self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias,
297
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
298
+ )
299
+ self.k_proj = BitLinear(
300
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
301
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
302
+ )
303
+ self.v_proj = BitLinear(
304
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
305
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
306
+ )
307
+ self.o_proj = BitLinear(
308
+ self.hidden_size, self.hidden_size, bias=config.attention_bias,
309
+ weight_bits=config.weight_bits, input_bits=config.input_bits,
310
+ )
311
+ self._init_rope()
312
+ self.inner_attn_ln = BoomerRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
313
+
314
+ def _init_rope(self):
315
+ if self.config.rope_scaling is None:
316
+ self.rotary_emb = BoomerRotaryEmbedding(
317
+ self.head_dim,
318
+ max_position_embeddings=self.max_position_embeddings,
319
+ base=self.rope_theta,
320
+ )
321
+ else:
322
+ raise NotImplementedError
323
+
324
+ def forward(
325
+ self,
326
+ hidden_states: torch.Tensor,
327
+ attention_mask: Optional[torch.Tensor] = None,
328
+ position_ids: Optional[torch.LongTensor] = None,
329
+ past_key_value: Optional[Cache] = None,
330
+ output_attentions: bool = False,
331
+ use_cache: bool = False,
332
+ cache_position: Optional[torch.LongTensor] = None,
333
+ **kwargs,
334
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
335
+ bsz, q_len, _ = hidden_states.size()
336
+
337
+ query_states = self.q_proj(hidden_states)
338
+ key_states = self.k_proj(hidden_states)
339
+ value_states = self.v_proj(hidden_states)
340
+
341
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
342
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
343
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
344
+
345
+ past_key_value = getattr(self, "past_key_value", past_key_value)
346
+ cos, sin = self.rotary_emb(value_states, position_ids)
347
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
348
+
349
+ if past_key_value is not None:
350
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
351
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
352
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
353
+
354
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
355
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
356
+
357
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
358
+
359
+ if attention_mask is not None: # no matter the length, we just slice it
360
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
361
+ attn_weights = attn_weights + causal_mask
362
+
363
+ # upcast attention to fp32
364
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
365
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
366
+ attn_output = torch.matmul(attn_weights, value_states)
367
+
368
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
369
+ raise ValueError(
370
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
371
+ f" {attn_output.size()}"
372
+ )
373
+
374
+ attn_output = attn_output.transpose(1, 2).contiguous()
375
+
376
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
377
+
378
+ attn_output = self.inner_attn_ln(attn_output)
379
+ attn_output = self.o_proj(attn_output)
380
+
381
+ if not output_attentions:
382
+ attn_weights = None
383
+
384
+ return attn_output, attn_weights, past_key_value
385
+
386
+
387
+ class BoomerFlashAttention2(BoomerAttention):
388
+ """
389
+ Boomer flash attention module. This module inherits from `BoomerAttention` as the weights of the module stays
390
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
391
+ flash attention and deal with padding tokens in case the input contains any of them.
392
+ """
393
+
394
+ def __init__(self, *args, **kwargs):
395
+ super().__init__(*args, **kwargs)
396
+
397
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
398
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
399
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
400
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
401
+
402
+ def forward(
403
+ self,
404
+ hidden_states: torch.Tensor,
405
+ attention_mask: Optional[torch.LongTensor] = None,
406
+ position_ids: Optional[torch.LongTensor] = None,
407
+ past_key_value: Optional[Cache] = None,
408
+ output_attentions: bool = False,
409
+ use_cache: bool = False,
410
+ cache_position: Optional[torch.LongTensor] = None,
411
+ **kwargs,
412
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
413
+ output_attentions = False
414
+
415
+ bsz, q_len, _ = hidden_states.size()
416
+
417
+ query_states = self.q_proj(hidden_states)
418
+ key_states = self.k_proj(hidden_states)
419
+ value_states = self.v_proj(hidden_states)
420
+
421
+ # Flash attention requires the input to have the shape
422
+ # batch_size x seq_length x head_dim x hidden_dim
423
+ # therefore we just need to keep the original shape
424
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
425
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
426
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
427
+
428
+ cos, sin = self.rotary_emb(value_states, position_ids)
429
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
430
+
431
+ past_key_value = getattr(self, "past_key_value", past_key_value)
432
+
433
+ if past_key_value is not None:
434
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
435
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
436
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
437
+
438
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
439
+ # to be able to avoid many of these transpose/reshape/view.
440
+ query_states = query_states.transpose(1, 2)
441
+ key_states = key_states.transpose(1, 2)
442
+ value_states = value_states.transpose(1, 2)
443
+
444
+ dropout_rate = self.attention_dropout if self.training else 0.0
445
+
446
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
447
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
448
+ # cast them back in the correct dtype just to be sure everything works as expected.
449
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
450
+ # in fp32. (BoomerRMSNorm handles it correctly)
451
+
452
+ input_dtype = query_states.dtype
453
+ if input_dtype == torch.float32:
454
+ if torch.is_autocast_enabled():
455
+ target_dtype = torch.get_autocast_gpu_dtype()
456
+ # Handle the case where the model is quantized
457
+ elif hasattr(self.config, "_pre_quantization_dtype"):
458
+ target_dtype = self.config._pre_quantization_dtype
459
+ else:
460
+ target_dtype = self.q_proj.weight.dtype
461
+
462
+ logger.warning_once(
463
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
464
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
465
+ f" {target_dtype}."
466
+ )
467
+
468
+ query_states = query_states.to(target_dtype)
469
+ key_states = key_states.to(target_dtype)
470
+ value_states = value_states.to(target_dtype)
471
+
472
+ attn_output = self._flash_attention_forward(
473
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
474
+ )
475
+
476
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
477
+ attn_output = self.inner_attn_ln(attn_output)
478
+ attn_output = self.o_proj(attn_output)
479
+
480
+ if not output_attentions:
481
+ attn_weights = None
482
+
483
+ return attn_output, attn_weights, past_key_value
484
+
485
+ def _flash_attention_forward(
486
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
487
+ ):
488
+ """
489
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
490
+ first unpad the input, then computes the attention scores and pad the final attention scores.
491
+
492
+ Args:
493
+ query_states (`torch.Tensor`):
494
+ Input query states to be passed to Flash Attention API
495
+ key_states (`torch.Tensor`):
496
+ Input key states to be passed to Flash Attention API
497
+ value_states (`torch.Tensor`):
498
+ Input value states to be passed to Flash Attention API
499
+ attention_mask (`torch.Tensor`):
500
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
501
+ position of padding tokens and 1 for the position of non-padding tokens.
502
+ dropout (`float`):
503
+ Attention dropout
504
+ softmax_scale (`float`, *optional*):
505
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
506
+ """
507
+ if not self._flash_attn_uses_top_left_mask:
508
+ causal = self.is_causal
509
+ else:
510
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BoomerFlashAttention2 __init__.
511
+ causal = self.is_causal and query_length != 1
512
+
513
+ # Contains at least one padding token in the sequence
514
+ if attention_mask is not None:
515
+ batch_size = query_states.shape[0]
516
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
517
+ query_states, key_states, value_states, attention_mask, query_length
518
+ )
519
+
520
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
521
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
522
+
523
+ attn_output_unpad = flash_attn_varlen_func(
524
+ query_states,
525
+ key_states,
526
+ value_states,
527
+ cu_seqlens_q=cu_seqlens_q,
528
+ cu_seqlens_k=cu_seqlens_k,
529
+ max_seqlen_q=max_seqlen_in_batch_q,
530
+ max_seqlen_k=max_seqlen_in_batch_k,
531
+ dropout_p=dropout,
532
+ softmax_scale=softmax_scale,
533
+ causal=causal,
534
+ )
535
+
536
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
537
+ else:
538
+ attn_output = flash_attn_func(
539
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
540
+ )
541
+
542
+ return attn_output
543
+
544
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
545
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
546
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
547
+
548
+ key_layer = index_first_axis(
549
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
550
+ )
551
+ value_layer = index_first_axis(
552
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
553
+ )
554
+ if query_length == kv_seq_len:
555
+ query_layer = index_first_axis(
556
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
557
+ )
558
+ cu_seqlens_q = cu_seqlens_k
559
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
560
+ indices_q = indices_k
561
+ elif query_length == 1:
562
+ max_seqlen_in_batch_q = 1
563
+ cu_seqlens_q = torch.arange(
564
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
565
+ ) # There is a memcpy here, that is very bad.
566
+ indices_q = cu_seqlens_q[:-1]
567
+ query_layer = query_layer.squeeze(1)
568
+ else:
569
+ # The -q_len: slice assumes left padding.
570
+ attention_mask = attention_mask[:, -query_length:]
571
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
572
+
573
+ return (
574
+ query_layer,
575
+ key_layer,
576
+ value_layer,
577
+ indices_q,
578
+ (cu_seqlens_q, cu_seqlens_k),
579
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
580
+ )
581
+
582
+
583
+
584
+ LLAMA_ATTENTION_CLASSES = {
585
+ "eager": BoomerAttention,
586
+ "flash_attention_2": BoomerFlashAttention2,
587
+ }
588
+
589
+
590
+ class BoomerDecoderLayer(nn.Module):
591
+ def __init__(self, config: BoomerConfig, layer_idx: int):
592
+ super().__init__()
593
+ self.hidden_size = config.hidden_size
594
+
595
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
596
+
597
+ self.mlp = BoomerMLP(config)
598
+ self.input_layernorm = BoomerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
599
+ self.post_attention_layernorm = BoomerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
600
+
601
+ def forward(
602
+ self,
603
+ hidden_states: torch.Tensor,
604
+ attention_mask: Optional[torch.Tensor] = None,
605
+ position_ids: Optional[torch.LongTensor] = None,
606
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
607
+ output_attentions: Optional[bool] = False,
608
+ use_cache: Optional[bool] = False,
609
+ cache_position: Optional[torch.LongTensor] = None,
610
+ **kwargs,
611
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
612
+ """
613
+ Args:
614
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
615
+ attention_mask (`torch.FloatTensor`, *optional*):
616
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
617
+ query_sequence_length, key_sequence_length)` if default attention is used.
618
+ output_attentions (`bool`, *optional*):
619
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
620
+ returned tensors for more detail.
621
+ use_cache (`bool`, *optional*):
622
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
623
+ (see `past_key_values`).
624
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
625
+ """
626
+ if "padding_mask" in kwargs:
627
+ warnings.warn(
628
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
629
+ )
630
+
631
+ residual = hidden_states
632
+
633
+ hidden_states = self.input_layernorm(hidden_states)
634
+
635
+ # Self Attention
636
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
637
+ hidden_states=hidden_states,
638
+ attention_mask=attention_mask,
639
+ position_ids=position_ids,
640
+ past_key_value=past_key_value,
641
+ output_attentions=output_attentions,
642
+ use_cache=use_cache,
643
+ cache_position=cache_position,
644
+ **kwargs,
645
+ )
646
+ hidden_states = residual + hidden_states
647
+
648
+ # Fully Connected
649
+ residual = hidden_states
650
+ hidden_states = self.post_attention_layernorm(hidden_states)
651
+ hidden_states = self.mlp(hidden_states)
652
+ hidden_states = residual + hidden_states
653
+
654
+ outputs = (hidden_states,)
655
+
656
+ if output_attentions:
657
+ outputs += (self_attn_weights,)
658
+
659
+ if use_cache:
660
+ outputs += (present_key_value,)
661
+
662
+ return outputs
663
+
664
+
665
+ LLAMA_START_DOCSTRING = r"""
666
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
667
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
668
+ etc.)
669
+
670
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
671
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
672
+ and behavior.
673
+
674
+ Parameters:
675
+ config ([`BoomerConfig`]):
676
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
677
+ load the weights associated with the model, only the configuration. Check out the
678
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
679
+ """
680
+
681
+
682
+ @add_start_docstrings(
683
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
684
+ LLAMA_START_DOCSTRING,
685
+ )
686
+ class BoomerPreTrainedModel(PreTrainedModel):
687
+ config_class = BoomerConfig
688
+ base_model_prefix = "model"
689
+ supports_gradient_checkpointing = True
690
+ _no_split_modules = ["BoomerDecoderLayer"]
691
+ _skip_keys_device_placement = ["past_key_values"]
692
+ _supports_flash_attn_2 = True
693
+ _supports_sdpa = False
694
+ _supports_cache_class = True
695
+
696
+ def _init_weights(self, module):
697
+ std = self.config.initializer_range
698
+ if isinstance(module, nn.Linear):
699
+ module.weight.data.normal_(mean=0.0, std=std)
700
+ if module.bias is not None:
701
+ module.bias.data.zero_()
702
+ elif isinstance(module, nn.Embedding):
703
+ module.weight.data.normal_(mean=0.0, std=std)
704
+ if module.padding_idx is not None:
705
+ module.weight.data[module.padding_idx].zero_()
706
+
707
+ def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
708
+ if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
709
+ raise ValueError(
710
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
711
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
712
+ )
713
+
714
+ for layer in self.model.layers:
715
+ device = layer.input_layernorm.weight.device
716
+ if hasattr(self.config, "_pre_quantization_dtype"):
717
+ dtype = self.config._pre_quantization_dtype
718
+ else:
719
+ dtype = layer.self_attn.o_proj.weight.dtype
720
+ layer.self_attn.past_key_value = cache_cls(
721
+ self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
722
+ )
723
+
724
+ def _reset_cache(self):
725
+ for layer in self.model.layers:
726
+ layer.self_attn.past_key_value = None
727
+
728
+
729
+ LLAMA_INPUTS_DOCSTRING = r"""
730
+ Args:
731
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
732
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
733
+ it.
734
+
735
+ Indices can be obtained using [`BoomerTokenizer`]. See [`PreTrainedTokenizer.encode`] and
736
+ [`PreTrainedTokenizer.__call__`] for details.
737
+
738
+ [What are input IDs?](../glossary#input-ids)
739
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
740
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
741
+
742
+ - 1 for tokens that are **not masked**,
743
+ - 0 for tokens that are **masked**.
744
+
745
+ [What are attention masks?](../glossary#attention-mask)
746
+
747
+ Indices can be obtained using [`BoomerTokenizer`]. See [`PreTrainedTokenizer.encode`] and
748
+ [`PreTrainedTokenizer.__call__`] for details.
749
+
750
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
751
+ `past_key_values`).
752
+
753
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
754
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
755
+ information on the default strategy.
756
+
757
+ - 1 indicates the head is **not masked**,
758
+ - 0 indicates the head is **masked**.
759
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
760
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
761
+ config.n_positions - 1]`.
762
+
763
+ [What are position IDs?](../glossary#position-ids)
764
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
765
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
766
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
767
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
768
+
769
+ Two formats are allowed:
770
+ - a [`~cache_utils.Cache`] instance;
771
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
772
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
773
+ cache format.
774
+
775
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
776
+ legacy cache format will be returned.
777
+
778
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
779
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
780
+ of shape `(batch_size, sequence_length)`.
781
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
782
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
783
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
784
+ model's internal embedding lookup matrix.
785
+ use_cache (`bool`, *optional*):
786
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
787
+ `past_key_values`).
788
+ output_attentions (`bool`, *optional*):
789
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
790
+ tensors for more detail.
791
+ output_hidden_states (`bool`, *optional*):
792
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
793
+ more detail.
794
+ return_dict (`bool`, *optional*):
795
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
796
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
797
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
798
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
799
+ the complete sequence length.
800
+ """
801
+
802
+
803
+ @add_start_docstrings(
804
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
805
+ LLAMA_START_DOCSTRING,
806
+ )
807
+ class BoomerModel(BoomerPreTrainedModel):
808
+ """
809
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BoomerDecoderLayer`]
810
+
811
+ Args:
812
+ config: BoomerConfig
813
+ """
814
+
815
+ def __init__(self, config: BoomerConfig):
816
+ super().__init__(config)
817
+ self.padding_idx = config.pad_token_id
818
+ self.vocab_size = config.vocab_size
819
+
820
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
821
+ self.layers = nn.ModuleList(
822
+ [BoomerDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
823
+ )
824
+ self.norm = BoomerRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
825
+ self.gradient_checkpointing = False
826
+
827
+ # Initialize weights and apply final processing
828
+ self.post_init()
829
+
830
+ def get_input_embeddings(self):
831
+ return self.embed_tokens
832
+
833
+ def set_input_embeddings(self, value):
834
+ self.embed_tokens = value
835
+
836
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
837
+ def forward(
838
+ self,
839
+ input_ids: torch.LongTensor = None,
840
+ attention_mask: Optional[torch.Tensor] = None,
841
+ position_ids: Optional[torch.LongTensor] = None,
842
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
843
+ inputs_embeds: Optional[torch.FloatTensor] = None,
844
+ use_cache: Optional[bool] = None,
845
+ output_attentions: Optional[bool] = None,
846
+ output_hidden_states: Optional[bool] = None,
847
+ return_dict: Optional[bool] = None,
848
+ cache_position: Optional[torch.LongTensor] = None,
849
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
850
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
851
+ output_hidden_states = (
852
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
853
+ )
854
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
855
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
856
+
857
+ if (input_ids is None) ^ (inputs_embeds is not None):
858
+ raise ValueError(
859
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
860
+ )
861
+
862
+ if self.gradient_checkpointing and self.training and use_cache:
863
+ logger.warning_once(
864
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
865
+ )
866
+ use_cache = False
867
+
868
+ if inputs_embeds is None:
869
+ inputs_embeds = self.embed_tokens(input_ids)
870
+
871
+ past_seen_tokens = 0
872
+ if use_cache: # kept for BC (cache positions)
873
+ if not isinstance(past_key_values, StaticCache):
874
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
875
+ past_seen_tokens = past_key_values.get_seq_length()
876
+
877
+ if cache_position is None:
878
+ if isinstance(past_key_values, StaticCache):
879
+ raise ValueError("cache_position is a required argument when using StaticCache.")
880
+ cache_position = torch.arange(
881
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
882
+ )
883
+
884
+ if position_ids is None:
885
+ position_ids = cache_position.unsqueeze(0)
886
+
887
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
888
+
889
+ # embed positions
890
+ hidden_states = inputs_embeds
891
+
892
+ # decoder layers
893
+ all_hidden_states = () if output_hidden_states else None
894
+ all_self_attns = () if output_attentions else None
895
+ next_decoder_cache = None
896
+
897
+ for decoder_layer in self.layers:
898
+ if output_hidden_states:
899
+ all_hidden_states += (hidden_states,)
900
+
901
+ if self.gradient_checkpointing and self.training:
902
+ layer_outputs = self._gradient_checkpointing_func(
903
+ decoder_layer.__call__,
904
+ hidden_states,
905
+ causal_mask,
906
+ position_ids,
907
+ past_key_values,
908
+ output_attentions,
909
+ use_cache,
910
+ cache_position,
911
+ )
912
+ else:
913
+ layer_outputs = decoder_layer(
914
+ hidden_states,
915
+ attention_mask=causal_mask,
916
+ position_ids=position_ids,
917
+ past_key_value=past_key_values,
918
+ output_attentions=output_attentions,
919
+ use_cache=use_cache,
920
+ cache_position=cache_position,
921
+ )
922
+
923
+ hidden_states = layer_outputs[0]
924
+
925
+ if use_cache:
926
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
927
+
928
+ if output_attentions:
929
+ all_self_attns += (layer_outputs[1],)
930
+
931
+ hidden_states = self.norm(hidden_states)
932
+
933
+ # add hidden states from the last decoder layer
934
+ if output_hidden_states:
935
+ all_hidden_states += (hidden_states,)
936
+
937
+ next_cache = None
938
+ if use_cache:
939
+ next_cache = (
940
+ next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
941
+ )
942
+ if not return_dict:
943
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
944
+ return BaseModelOutputWithPast(
945
+ last_hidden_state=hidden_states,
946
+ past_key_values=next_cache,
947
+ hidden_states=all_hidden_states,
948
+ attentions=all_self_attns,
949
+ )
950
+
951
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
952
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
953
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
954
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
955
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
956
+ if self.config._attn_implementation == "flash_attention_2":
957
+ if attention_mask is not None and 0.0 in attention_mask:
958
+ return attention_mask
959
+ return None
960
+
961
+ dtype, device = input_tensor.dtype, input_tensor.device
962
+ min_dtype = torch.finfo(dtype).min
963
+ sequence_length = input_tensor.shape[1]
964
+ if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache
965
+ target_length = self.config.max_position_embeddings
966
+ else: # dynamic cache
967
+ target_length = (
968
+ attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
969
+ )
970
+
971
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
972
+ if sequence_length != 1:
973
+ causal_mask = torch.triu(causal_mask, diagonal=1)
974
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
975
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
976
+ if attention_mask is not None:
977
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
978
+ if attention_mask.dim() == 2:
979
+ mask_length = attention_mask.shape[-1]
980
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
981
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
982
+ elif attention_mask.dim() == 4:
983
+ # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
984
+ # cache. In that case, the 4D attention mask attends to the newest tokens only.
985
+ if attention_mask.shape[-2] < cache_position[0] + sequence_length:
986
+ offset = cache_position[0]
987
+ else:
988
+ offset = 0
989
+ mask_shape = attention_mask.shape
990
+ mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
991
+ causal_mask[
992
+ : mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
993
+ ] = mask_slice
994
+
995
+ return causal_mask
996
+
997
+
998
+ class BoomerForCausalLM(BoomerPreTrainedModel):
999
+ _tied_weights_keys = ["lm_head.weight"]
1000
+
1001
+ def __init__(self, config):
1002
+ super().__init__(config)
1003
+ self.model = BoomerModel(config)
1004
+ self.vocab_size = config.vocab_size
1005
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1006
+
1007
+ # Initialize weights and apply final processing
1008
+ self.post_init()
1009
+
1010
+ def get_input_embeddings(self):
1011
+ return self.model.embed_tokens
1012
+
1013
+ def set_input_embeddings(self, value):
1014
+ self.model.embed_tokens = value
1015
+
1016
+ def get_output_embeddings(self):
1017
+ return self.lm_head
1018
+
1019
+ def set_output_embeddings(self, new_embeddings):
1020
+ self.lm_head = new_embeddings
1021
+
1022
+ def set_decoder(self, decoder):
1023
+ self.model = decoder
1024
+
1025
+ def get_decoder(self):
1026
+ return self.model
1027
+
1028
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1029
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1030
+ def forward(
1031
+ self,
1032
+ input_ids: torch.LongTensor = None,
1033
+ attention_mask: Optional[torch.Tensor] = None,
1034
+ position_ids: Optional[torch.LongTensor] = None,
1035
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1036
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1037
+ labels: Optional[torch.LongTensor] = None,
1038
+ use_cache: Optional[bool] = None,
1039
+ output_attentions: Optional[bool] = None,
1040
+ output_hidden_states: Optional[bool] = None,
1041
+ return_dict: Optional[bool] = None,
1042
+ cache_position: Optional[torch.LongTensor] = None,
1043
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1044
+ r"""
1045
+ Args:
1046
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1047
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1048
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1049
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1050
+
1051
+ Returns:
1052
+
1053
+ Example:
1054
+
1055
+ ```python
1056
+ >>> from transformers import LlamaTokenizer, LlamaForCausalLM
1057
+
1058
+ >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
1059
+ >>> tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
1060
+
1061
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1062
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1063
+
1064
+ >>> # Generate
1065
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1066
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1067
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1068
+ ```"""
1069
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1070
+ output_hidden_states = (
1071
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1072
+ )
1073
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1074
+
1075
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1076
+ outputs = self.model(
1077
+ input_ids=input_ids,
1078
+ attention_mask=attention_mask,
1079
+ position_ids=position_ids,
1080
+ past_key_values=past_key_values,
1081
+ inputs_embeds=inputs_embeds,
1082
+ use_cache=use_cache,
1083
+ output_attentions=output_attentions,
1084
+ output_hidden_states=output_hidden_states,
1085
+ return_dict=return_dict,
1086
+ cache_position=cache_position,
1087
+ )
1088
+
1089
+ hidden_states = outputs[0]
1090
+ logits = self.lm_head(hidden_states)
1091
+ logits = logits.float()
1092
+
1093
+ loss = None
1094
+ if labels is not None:
1095
+ # Shift so that tokens < n predict n
1096
+ shift_logits = logits[..., :-1, :].contiguous()
1097
+ shift_labels = labels[..., 1:].contiguous()
1098
+ # Flatten the tokens
1099
+ loss_fct = CrossEntropyLoss()
1100
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1101
+ shift_labels = shift_labels.view(-1)
1102
+ # Enable model parallelism
1103
+ shift_labels = shift_labels.to(shift_logits.device)
1104
+ loss = loss_fct(shift_logits, shift_labels)
1105
+
1106
+ if not return_dict:
1107
+ output = (logits,) + outputs[1:]
1108
+ return (loss,) + output if loss is not None else output
1109
+
1110
+ return CausalLMOutputWithPast(
1111
+ loss=loss,
1112
+ logits=logits,
1113
+ past_key_values=outputs.past_key_values,
1114
+ hidden_states=outputs.hidden_states,
1115
+ attentions=outputs.attentions,
1116
+ )
1117
+
1118
+ def prepare_inputs_for_generation(
1119
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
1120
+ ):
1121
+ # With static cache, the `past_key_values` is None
1122
+ # TODO joao: standardize interface for the different Cache classes and remove of this if
1123
+ has_static_cache = False
1124
+ if past_key_values is None:
1125
+ past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None)
1126
+ has_static_cache = past_key_values is not None
1127
+
1128
+ past_length = 0
1129
+ if past_key_values is not None:
1130
+ if isinstance(past_key_values, Cache):
1131
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1132
+ max_cache_length = (
1133
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1134
+ if past_key_values.get_max_length() is not None
1135
+ else None
1136
+ )
1137
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1138
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1139
+ else:
1140
+ cache_length = past_length = past_key_values[0][0].shape[2]
1141
+ max_cache_length = None
1142
+
1143
+ # Keep only the unprocessed tokens:
1144
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1145
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1146
+ # input)
1147
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1148
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1149
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1150
+ # input_ids based on the past_length.
1151
+ elif past_length < input_ids.shape[1]:
1152
+ input_ids = input_ids[:, past_length:]
1153
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1154
+
1155
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1156
+ if (
1157
+ max_cache_length is not None
1158
+ and attention_mask is not None
1159
+ and cache_length + input_ids.shape[1] > max_cache_length
1160
+ ):
1161
+ attention_mask = attention_mask[:, -max_cache_length:]
1162
+
1163
+ position_ids = kwargs.get("position_ids", None)
1164
+ if attention_mask is not None and position_ids is None:
1165
+ # create position_ids on the fly for batch generation
1166
+ position_ids = attention_mask.long().cumsum(-1) - 1
1167
+ position_ids.masked_fill_(attention_mask == 0, 1)
1168
+ if past_key_values:
1169
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1170
+
1171
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1172
+ if inputs_embeds is not None and past_key_values is None:
1173
+ model_inputs = {"inputs_embeds": inputs_embeds}
1174
+ else:
1175
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1176
+ # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
1177
+ # TODO: use `next_tokens` directly instead.
1178
+ model_inputs = {"input_ids": input_ids.contiguous()}
1179
+
1180
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1181
+ if cache_position is None:
1182
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1183
+ else:
1184
+ cache_position = cache_position[-input_length:]
1185
+
1186
+ if has_static_cache:
1187
+ past_key_values = None
1188
+
1189
+ model_inputs.update(
1190
+ {
1191
+ "position_ids": position_ids,
1192
+ "cache_position": cache_position,
1193
+ "past_key_values": past_key_values,
1194
+ "use_cache": kwargs.get("use_cache"),
1195
+ "attention_mask": attention_mask,
1196
+ }
1197
+ )
1198
+ return model_inputs
1199
+
1200
+ @staticmethod
1201
+ def _reorder_cache(past_key_values, beam_idx):
1202
+ reordered_past = ()
1203
+ for layer_past in past_key_values:
1204
+ reordered_past += (
1205
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1206
+ )
1207
+ return reordered_past
1208
+
1209
+
1210
+ @add_start_docstrings(
1211
+ """
1212
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1213
+
1214
+ [`BoomerForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1215
+ (e.g. GPT-2) do.
1216
+
1217
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1218
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1219
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1220
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1221
+ each row of the batch).
1222
+ """,
1223
+ LLAMA_START_DOCSTRING,
1224
+ )
1225
+ class BoomerForSequenceClassification(BoomerPreTrainedModel):
1226
+ def __init__(self, config):
1227
+ super().__init__(config)
1228
+ self.num_labels = config.num_labels
1229
+ self.model = BoomerModel(config)
1230
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1231
+
1232
+ # Initialize weights and apply final processing
1233
+ self.post_init()
1234
+
1235
+ def get_input_embeddings(self):
1236
+ return self.model.embed_tokens
1237
+
1238
+ def set_input_embeddings(self, value):
1239
+ self.model.embed_tokens = value
1240
+
1241
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1242
+ def forward(
1243
+ self,
1244
+ input_ids: torch.LongTensor = None,
1245
+ attention_mask: Optional[torch.Tensor] = None,
1246
+ position_ids: Optional[torch.LongTensor] = None,
1247
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1248
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1249
+ labels: Optional[torch.LongTensor] = None,
1250
+ use_cache: Optional[bool] = None,
1251
+ output_attentions: Optional[bool] = None,
1252
+ output_hidden_states: Optional[bool] = None,
1253
+ return_dict: Optional[bool] = None,
1254
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1255
+ r"""
1256
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1257
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1258
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1259
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1260
+ """
1261
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1262
+
1263
+ transformer_outputs = self.model(
1264
+ input_ids,
1265
+ attention_mask=attention_mask,
1266
+ position_ids=position_ids,
1267
+ past_key_values=past_key_values,
1268
+ inputs_embeds=inputs_embeds,
1269
+ use_cache=use_cache,
1270
+ output_attentions=output_attentions,
1271
+ output_hidden_states=output_hidden_states,
1272
+ return_dict=return_dict,
1273
+ )
1274
+ hidden_states = transformer_outputs[0]
1275
+ logits = self.score(hidden_states)
1276
+
1277
+ if input_ids is not None:
1278
+ batch_size = input_ids.shape[0]
1279
+ else:
1280
+ batch_size = inputs_embeds.shape[0]
1281
+
1282
+ if self.config.pad_token_id is None and batch_size != 1:
1283
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1284
+ if self.config.pad_token_id is None:
1285
+ sequence_lengths = -1
1286
+ else:
1287
+ if input_ids is not None:
1288
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1289
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1290
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1291
+ sequence_lengths = sequence_lengths.to(logits.device)
1292
+ else:
1293
+ sequence_lengths = -1
1294
+
1295
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1296
+
1297
+ loss = None
1298
+ if labels is not None:
1299
+ labels = labels.to(logits.device)
1300
+ if self.config.problem_type is None:
1301
+ if self.num_labels == 1:
1302
+ self.config.problem_type = "regression"
1303
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1304
+ self.config.problem_type = "single_label_classification"
1305
+ else:
1306
+ self.config.problem_type = "multi_label_classification"
1307
+
1308
+ if self.config.problem_type == "regression":
1309
+ loss_fct = MSELoss()
1310
+ if self.num_labels == 1:
1311
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1312
+ else:
1313
+ loss = loss_fct(pooled_logits, labels)
1314
+ elif self.config.problem_type == "single_label_classification":
1315
+ loss_fct = CrossEntropyLoss()
1316
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1317
+ elif self.config.problem_type == "multi_label_classification":
1318
+ loss_fct = BCEWithLogitsLoss()
1319
+ loss = loss_fct(pooled_logits, labels)
1320
+ if not return_dict:
1321
+ output = (pooled_logits,) + transformer_outputs[1:]
1322
+ return ((loss,) + output) if loss is not None else output
1323
+
1324
+ return SequenceClassifierOutputWithPast(
1325
+ loss=loss,
1326
+ logits=pooled_logits,
1327
+ past_key_values=transformer_outputs.past_key_values,
1328
+ hidden_states=transformer_outputs.hidden_states,
1329
+ attentions=transformer_outputs.attentions,
1330
+ )
1331
+
1332
+
1333
+ @add_start_docstrings(
1334
+ """
1335
+ The Boomer Model transformer with a span classification head on top for extractive question-answering tasks like
1336
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1337
+ """,
1338
+ LLAMA_START_DOCSTRING,
1339
+ )
1340
+ class BoomerForQuestionAnswering(BoomerPreTrainedModel):
1341
+ base_model_prefix = "transformer"
1342
+
1343
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Boomer
1344
+ def __init__(self, config):
1345
+ super().__init__(config)
1346
+ self.transformer = BoomerModel(config)
1347
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1348
+
1349
+ # Initialize weights and apply final processing
1350
+ self.post_init()
1351
+
1352
+ def get_input_embeddings(self):
1353
+ return self.transformer.embed_tokens
1354
+
1355
+ def set_input_embeddings(self, value):
1356
+ self.transformer.embed_tokens = value
1357
+
1358
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1359
+ def forward(
1360
+ self,
1361
+ input_ids: Optional[torch.LongTensor] = None,
1362
+ attention_mask: Optional[torch.FloatTensor] = None,
1363
+ position_ids: Optional[torch.LongTensor] = None,
1364
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1365
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1366
+ start_positions: Optional[torch.LongTensor] = None,
1367
+ end_positions: Optional[torch.LongTensor] = None,
1368
+ output_attentions: Optional[bool] = None,
1369
+ output_hidden_states: Optional[bool] = None,
1370
+ return_dict: Optional[bool] = None,
1371
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1372
+ r"""
1373
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1374
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1375
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1376
+ are not taken into account for computing the loss.
1377
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1378
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1379
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1380
+ are not taken into account for computing the loss.
1381
+ """
1382
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1383
+
1384
+ outputs = self.transformer(
1385
+ input_ids,
1386
+ attention_mask=attention_mask,
1387
+ position_ids=position_ids,
1388
+ past_key_values=past_key_values,
1389
+ inputs_embeds=inputs_embeds,
1390
+ output_attentions=output_attentions,
1391
+ output_hidden_states=output_hidden_states,
1392
+ return_dict=return_dict,
1393
+ )
1394
+
1395
+ sequence_output = outputs[0]
1396
+
1397
+ logits = self.qa_outputs(sequence_output)
1398
+ start_logits, end_logits = logits.split(1, dim=-1)
1399
+ start_logits = start_logits.squeeze(-1).contiguous()
1400
+ end_logits = end_logits.squeeze(-1).contiguous()
1401
+
1402
+ total_loss = None
1403
+ if start_positions is not None and end_positions is not None:
1404
+ # If we are on multi-GPU, split add a dimension
1405
+ if len(start_positions.size()) > 1:
1406
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1407
+ if len(end_positions.size()) > 1:
1408
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1409
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1410
+ ignored_index = start_logits.size(1)
1411
+ start_positions = start_positions.clamp(0, ignored_index)
1412
+ end_positions = end_positions.clamp(0, ignored_index)
1413
+
1414
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1415
+ start_loss = loss_fct(start_logits, start_positions)
1416
+ end_loss = loss_fct(end_logits, end_positions)
1417
+ total_loss = (start_loss + end_loss) / 2
1418
+
1419
+ if not return_dict:
1420
+ output = (start_logits, end_logits) + outputs[2:]
1421
+ return ((total_loss,) + output) if total_loss is not None else output
1422
+
1423
+ return QuestionAnsweringModelOutput(
1424
+ loss=total_loss,
1425
+ start_logits=start_logits,
1426
+ end_logits=end_logits,
1427
+ hidden_states=outputs.hidden_states,
1428
+ attentions=outputs.attentions,
1429
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2e509865169c2b4fa56bb12c4f764328d25739891a1cd7f040c07448a9ca175
3
+ size 1191551
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "<unk>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true
43
+ }