File size: 3,202 Bytes
aa4a688 ac276c2 aa4a688 ac276c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: llama2
metrics:
- code_eval
library_name: transformers
tags:
- code
---
# Introducing Code Millenials 34B
Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks, aiming to revolutionize how systems understand and translate natural language instructions into code queries. Built on CodeLLaMa Python 34B, our model has been meticulously fine-tuned with a curated code generation instructions, ensuring quality and precision.
### News ๐ฅ๐ฅ๐ฅ
- [2024/01/03] We released **Code Millenials 34B** , which achieves the **80.48 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2024/01/02] We released **Code Millenials 13B** , which achieves the **76.21 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
### HumanEval
<p align="center" width="100%">
<a ><img src="result.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>
For the millenial models, the eval script in the github repo is used for the above result.
Note: The humaneval values of other models are taken from the official repos of [WizardCoder](https://github.com/nlpxucan/WizardLM), [DeepseekCoder](https://github.com/deepseek-ai/deepseek-coder), [Gemini](https://deepmind.google/technologies/gemini/#capabilities) etc.
### Models
| Model | Checkpoint | HumanEval |
|---------|-------------|-----------|
|Code Millenials 34B | <a href="https://huggingface.co/budecosystem/code-millenials-34b" target="_blank">HF Link</a> | 80.48 |
|Code Millenials 13B | <a href="https://huggingface.co/budecosystem/code-millenials-13b" target="_blank">HF Link</a> | 76.21 |
### ๐ Quick Start
Inference code using the pre-trained model from the Hugging Face model hub
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-34b")
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-34b")
template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
### Instruction: {instruction} ### Response:"""
instruction = <Your code instruction here>
prompt = template.format(instruction=instruction)
inputs = tokenizer(prompt, return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))
```
## Training details
The model is trained of 16 A100 80GB for approximately 50hrs.
| Hyperparameters | Value |
| :----------------------------| :-----: |
| per_device_train_batch_size | 16 |
| gradient_accumulation_steps | 1 |
| epoch | 3 |
| steps | 2157 |
| learning_rate | 2e-5 |
| lr schedular type | cosine |
| warmup ratio | 0.1 |
| optimizer | adamw |
| fp16 | True |
| GPU | 16 A100 80GB |
### Important Note
- **Bias, Risks, and Limitations:** Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding. |