File size: 2,295 Bytes
1ced50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9204c81
 
1ced50e
 
d2ca614
a684dd0
130a2a4
a684dd0
1ced50e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9204c81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: byroneverson/glm-4-9b-chat-abliterated
language:
- zh
- en
library_name: transformers
license: other
license_name: glm-4
license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- glm
- chatglm
- thudm
- llama-cpp
- gguf-my-repo
- chat
- abliterated
---

# byroneverson/glm-4-9b-chat-abliterated-gguf

## Version 1.1 (Updated 9/1/2024): Layer 16 is used for abliteration instead of 20. Refusal mitigation tends to work better with this layer. PCA and cosine similarity tests seem to agree.

This model was converted to GGUF format from [`byroneverson/glm-4-9b-chat-abliterated`](https://huggingface.co/byroneverson/glm-4-9b-chat-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/byroneverson/glm-4-9b-chat-abliterated) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo byroneverson/glm-4-9b-chat-abliterated-Q4_K_M-GGUF --hf-file glm-4-9b-chat-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo byroneverson/glm-4-9b-chat-abliterated-Q4_K_M-GGUF --hf-file glm-4-9b-chat-abliterated-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo byroneverson/glm-4-9b-chat-abliterated-Q4_K_M-GGUF --hf-file glm-4-9b-chat-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo byroneverson/glm-4-9b-chat-abliterated-Q4_K_M-GGUF --hf-file glm-4-9b-chat-abliterated-q4_k_m.gguf -c 2048
```