File size: 1,652 Bytes
eaadb67 6557d5b eaadb67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
base_model: NousResearch/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: lora-out
results: []
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# lora-out
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on a synthetic recipe assistant dataset comprised of 2000 samples.
It achieves the following results on the evaluation set:
- Loss: 0.8666
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9548 | 8.0 | 20 | 0.9240 |
| 0.8514 | 16.0 | 40 | 0.8523 |
| 0.7774 | 24.0 | 60 | 0.8498 |
| 0.7178 | 32.0 | 80 | 0.8597 |
| 0.7103 | 40.0 | 100 | 0.8666 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|