cahya commited on
Commit
e090680
·
1 Parent(s): c60c9c5

added first commit

Browse files
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: tr
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: Wav2Vec2 Base Turkish with Artificial Voices by Cahya
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice tr
21
+ type: common_voice
22
+ args: tr
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 57.60
27
+ ---
28
+
29
+ # Wav2Vec2-Large-XLSR-Turkish
30
+ Fine-tuned [ceyda/wav2vec2-base-760](https://huggingface.co/ceyda/wav2vec2-base-760)
31
+ on the [Turkish Artificial Common Voice dataset](https://cloud.uncool.ai/index.php/f/2165181).
32
+
33
+ When using this model, make sure that your speech input is sampled at 16kHz.
34
+
35
+ ## Usage
36
+ The model can be used directly (without a language model) as follows:
37
+ ```python
38
+ import torch
39
+ import torchaudio
40
+ from datasets import load_dataset
41
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
42
+
43
+ test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
44
+
45
+ processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial")
46
+ model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial")
47
+
48
+
49
+ # Preprocessing the datasets.
50
+ # We need to read the aduio files as arrays
51
+ def speech_file_to_array_fn(batch):
52
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
53
+ resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
54
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
55
+ return batch
56
+
57
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
58
+ inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
59
+
60
+ with torch.no_grad():
61
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
+
63
+ predicted_ids = torch.argmax(logits, dim=-1)
64
+
65
+ print("Prediction:", processor.batch_decode(predicted_ids))
66
+ print("Reference:", test_dataset[:2]["sentence"])
67
+ ```
68
+
69
+
70
+ ## Evaluation
71
+
72
+ The model can be evaluated as follows on the Turkish test data of Common Voice.
73
+
74
+ ```python
75
+ import torch
76
+ import torchaudio
77
+ from datasets import load_dataset, load_metric
78
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
79
+ import re
80
+
81
+ test_dataset = load_dataset("common_voice", "tr", split="test")
82
+ wer = load_metric("wer")
83
+
84
+ processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial")
85
+ model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial")
86
+ model.to("cuda")
87
+
88
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\'\`…\’»«]'
89
+
90
+ # Preprocessing the datasets.
91
+ # We need to read the aduio files as arrays
92
+ def speech_file_to_array_fn(batch):
93
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
95
+ resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
96
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
97
+ return batch
98
+
99
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
100
+
101
+ # Preprocessing the datasets.
102
+ # We need to read the aduio files as arrays
103
+ def evaluate(batch):
104
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
105
+
106
+ with torch.no_grad():
107
+ logits = model(inputs.input_values.to("cuda")).logits
108
+
109
+ pred_ids = torch.argmax(logits, dim=-1)
110
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
111
+ return batch
112
+
113
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
114
+
115
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
116
+ ```
117
+
118
+ **Test Result**: 57.60 %
119
+
120
+ ## Training
121
+
122
+ The Artificial Common Voice `train`, `validation` is used to fine tune the model
123
+
124
+ The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition)
config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ceyda/wav2vec2-base-760",
3
+ "activation_dropout": 0.055,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.094,
9
+ "bos_token_id": 1,
10
+ "conv_bias": false,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": true,
40
+ "do_stable_layer_norm": false,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_norm": "group",
44
+ "feat_proj_dropout": 0.04,
45
+ "final_dropout": 0.1,
46
+ "gradient_checkpointing": true,
47
+ "hidden_act": "gelu",
48
+ "hidden_dropout": 0.047,
49
+ "hidden_size": 768,
50
+ "initializer_range": 0.02,
51
+ "intermediate_size": 3072,
52
+ "layer_norm_eps": 1e-05,
53
+ "layerdrop": 0.041,
54
+ "mask_feature_length": 10,
55
+ "mask_feature_prob": 0.0,
56
+ "mask_time_length": 10,
57
+ "mask_time_prob": 0.4,
58
+ "model_type": "wav2vec2",
59
+ "num_attention_heads": 12,
60
+ "num_conv_pos_embedding_groups": 16,
61
+ "num_conv_pos_embeddings": 128,
62
+ "num_feat_extract_layers": 7,
63
+ "num_hidden_layers": 12,
64
+ "pad_token_id": 39,
65
+ "transformers_version": "4.5.0.dev0",
66
+ "vocab_size": 40
67
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da14578bf815325f06c58b49685b3b61fc2d6a349e8bb8cac0239790056cc5d6
3
+ size 377700076
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"-": 1, "a": 2, "b": 3, "c": 4, "d": 5, "e": 6, "f": 7, "g": 8, "h": 9, "i": 10, "j": 11, "k": 12, "l": 13, "m": 14, "n": 15, "o": 16, "p": 17, "q": 18, "r": 19, "s": 20, "t": 21, "u": 22, "v": 23, "w": 24, "x": 25, "y": 26, "z": 27, "â": 28, "ç": 29, "ë": 30, "î": 31, "ö": 32, "ü": 33, "ğ": 34, "ı": 35, "ş": 36, "̇": 37, "|": 0, "[UNK]": 38, "[PAD]": 39}