File size: 2,446 Bytes
416fb0f
766a28e
 
416fb0f
 
766a28e
416fb0f
 
766a28e
9d19e49
 
416fb0f
 
 
766a28e
416fb0f
 
 
 
 
766a28e
 
416fb0f
 
 
 
 
1c4bdb9
416fb0f
 
 
 
 
766a28e
416fb0f
a171ffa
416fb0f
9d19e49
1c4bdb9
416fb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d19e49
 
 
416fb0f
 
 
 
9d19e49
416fb0f
 
 
 
9d19e49
 
1c4bdb9
 
 
 
 
 
 
 
 
 
416fb0f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language:
- id
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- magic_data
- TITML
metrics:
- wer
model-index:
- name: Whisper Medium Indonesian
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 id
      type: mozilla-foundation/common_voice_11_0
      config: id
      split: test
    metrics:
    - name: Wer
      type: wer
      value: 3.8273540533062804
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium Indonesian

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0, magic_data, titml id dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0698
- Wer: 3.8274

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0427        | 0.33  | 1000  | 0.0664          | 4.3807 |
| 0.042         | 0.66  | 2000  | 0.0658          | 3.9426 |
| 0.0265        | 0.99  | 3000  | 0.0657          | 3.8274 |
| 0.0211        | 1.32  | 4000  | 0.0679          | 3.8366 |
| 0.0212        | 1.66  | 5000  | 0.0682          | 3.8412 |
| 0.0206        | 1.99  | 6000  | 0.0683          | 3.8689 |
| 0.0166        | 2.32  | 7000  | 0.0711          | 3.9657 |
| 0.0095        | 2.65  | 8000  | 0.0717          | 3.9980 |
| 0.0122        | 2.98  | 9000  | 0.0714          | 3.9795 |
| 0.0049        | 3.31  | 10000 | 0.0720          | 3.9887 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2