callmesan commited on
Commit
b9503f2
·
verified ·
1 Parent(s): 96b3411

End of training

Browse files
Files changed (2) hide show
  1. README.md +73 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: cardiffnlp/twitter-roberta-large-hate-latest
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: twitter-roberta-large-hate-latest-offensive-eval-kn
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # twitter-roberta-large-hate-latest-offensive-eval-kn
21
+
22
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.7861
25
+ - Accuracy: 0.7427
26
+ - Precision: 0.4604
27
+ - Recall: 0.3928
28
+ - F1: 0.3901
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 1e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 128
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 2
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 5
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 0.8805 | 0.9968 | 157 | 0.8450 | 0.7339 | 0.3531 | 0.3488 | 0.3407 |
62
+ | 0.7579 | 2.0 | 315 | 0.7816 | 0.7607 | 0.5057 | 0.4154 | 0.4200 |
63
+ | 0.7177 | 2.9968 | 472 | 0.7848 | 0.7571 | 0.4702 | 0.4043 | 0.4209 |
64
+ | 0.6914 | 4.0 | 630 | 0.8011 | 0.7446 | 0.4242 | 0.4029 | 0.4077 |
65
+ | 0.5218 | 4.9841 | 785 | 0.8166 | 0.7429 | 0.4122 | 0.4146 | 0.4115 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.45.1
71
+ - Pytorch 2.4.0
72
+ - Datasets 3.0.1
73
+ - Tokenizers 0.20.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2c29bcb2a9e83a2aa6ed8ff0dc427b546f512e629b77f9095c2acae303e100f9
3
  size 1421511816
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:948ef9e9a8e9ca79b808661bd4d494e0f58b8e97038b1a274af835dd99f4df10
3
  size 1421511816