End of training
Browse files
README.md
CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Accuracy: 0.
|
26 |
-
- Precision: 0.
|
27 |
-
- Recall: 0.
|
28 |
-
- F1: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -44,25 +44,30 @@ More information needed
|
|
44 |
### Training hyperparameters
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
-
- learning_rate:
|
48 |
- train_batch_size: 32
|
49 |
- eval_batch_size: 128
|
50 |
- seed: 42
|
51 |
-
- gradient_accumulation_steps:
|
52 |
-
- total_train_batch_size:
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
-
- num_epochs:
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
-
| Training Loss | Epoch
|
60 |
-
|
61 |
-
| 0.
|
62 |
-
|
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
|
68 |
### Framework versions
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.8408
|
25 |
+
- Accuracy: 0.8023
|
26 |
+
- Precision: 0.7245
|
27 |
+
- Recall: 0.7129
|
28 |
+
- F1: 0.7177
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
44 |
### Training hyperparameters
|
45 |
|
46 |
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 5e-05
|
48 |
- train_batch_size: 32
|
49 |
- eval_batch_size: 128
|
50 |
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 2
|
52 |
+
- total_train_batch_size: 64
|
53 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 10
|
56 |
|
57 |
### Training results
|
58 |
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
61 |
+
| 0.9091 | 1.0 | 113 | 0.8078 | 0.7034 | 0.3788 | 0.4083 | 0.3878 |
|
62 |
+
| 1.1008 | 2.0 | 226 | 0.9036 | 0.6510 | 0.2624 | 0.3397 | 0.2841 |
|
63 |
+
| 0.7624 | 3.0 | 339 | 0.6444 | 0.7844 | 0.7015 | 0.6274 | 0.6544 |
|
64 |
+
| 0.5512 | 4.0 | 452 | 0.5075 | 0.8342 | 0.7675 | 0.7453 | 0.7463 |
|
65 |
+
| 0.5258 | 5.0 | 565 | 0.3519 | 0.8858 | 0.8263 | 0.8081 | 0.8163 |
|
66 |
+
| 0.3489 | 6.0 | 678 | 0.3154 | 0.9011 | 0.8612 | 0.8260 | 0.8399 |
|
67 |
+
| 0.3182 | 7.0 | 791 | 0.2394 | 0.9295 | 0.8985 | 0.8864 | 0.8895 |
|
68 |
+
| 0.2263 | 8.0 | 904 | 0.1722 | 0.9502 | 0.9092 | 0.9223 | 0.9143 |
|
69 |
+
| 0.2024 | 9.0 | 1017 | 0.1252 | 0.9684 | 0.9474 | 0.9441 | 0.9457 |
|
70 |
+
| 0.1757 | 10.0 | 1130 | 0.1101 | 0.9736 | 0.9592 | 0.9506 | 0.9548 |
|
71 |
|
72 |
|
73 |
### Framework versions
|