callmesan commited on
Commit
7221c51
·
verified ·
1 Parent(s): 97335dc

End of training

Browse files
Files changed (1) hide show
  1. README.md +21 -16
README.md CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.4394
25
- - Accuracy: 0.8521
26
- - Precision: 0.7814
27
- - Recall: 0.7733
28
- - F1: 0.7764
29
 
30
  ## Model description
31
 
@@ -44,25 +44,30 @@ More information needed
44
  ### Training hyperparameters
45
 
46
  The following hyperparameters were used during training:
47
- - learning_rate: 1e-05
48
  - train_batch_size: 32
49
  - eval_batch_size: 128
50
  - seed: 42
51
- - gradient_accumulation_steps: 4
52
- - total_train_batch_size: 128
53
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
  - lr_scheduler_type: linear
55
- - num_epochs: 5
56
 
57
  ### Training results
58
 
59
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
- |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
- | 0.8983 | 0.9912 | 56 | 0.7694 | 0.7359 | 0.6713 | 0.6012 | 0.6247 |
62
- | 0.7237 | 2.0 | 113 | 0.5778 | 0.7987 | 0.7241 | 0.6824 | 0.6913 |
63
- | 0.5471 | 2.9912 | 169 | 0.4937 | 0.8297 | 0.7491 | 0.7530 | 0.7503 |
64
- | 0.5403 | 4.0 | 226 | 0.4589 | 0.8424 | 0.7705 | 0.7575 | 0.7626 |
65
- | 0.5452 | 4.9558 | 280 | 0.4394 | 0.8521 | 0.7814 | 0.7733 | 0.7764 |
 
 
 
 
 
66
 
67
 
68
  ### Framework versions
 
21
 
22
  This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.8408
25
+ - Accuracy: 0.8023
26
+ - Precision: 0.7245
27
+ - Recall: 0.7129
28
+ - F1: 0.7177
29
 
30
  ## Model description
31
 
 
44
  ### Training hyperparameters
45
 
46
  The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
  - train_batch_size: 32
49
  - eval_batch_size: 128
50
  - seed: 42
51
+ - gradient_accumulation_steps: 2
52
+ - total_train_batch_size: 64
53
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
  - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
 
57
  ### Training results
58
 
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 0.9091 | 1.0 | 113 | 0.8078 | 0.7034 | 0.3788 | 0.4083 | 0.3878 |
62
+ | 1.1008 | 2.0 | 226 | 0.9036 | 0.6510 | 0.2624 | 0.3397 | 0.2841 |
63
+ | 0.7624 | 3.0 | 339 | 0.6444 | 0.7844 | 0.7015 | 0.6274 | 0.6544 |
64
+ | 0.5512 | 4.0 | 452 | 0.5075 | 0.8342 | 0.7675 | 0.7453 | 0.7463 |
65
+ | 0.5258 | 5.0 | 565 | 0.3519 | 0.8858 | 0.8263 | 0.8081 | 0.8163 |
66
+ | 0.3489 | 6.0 | 678 | 0.3154 | 0.9011 | 0.8612 | 0.8260 | 0.8399 |
67
+ | 0.3182 | 7.0 | 791 | 0.2394 | 0.9295 | 0.8985 | 0.8864 | 0.8895 |
68
+ | 0.2263 | 8.0 | 904 | 0.1722 | 0.9502 | 0.9092 | 0.9223 | 0.9143 |
69
+ | 0.2024 | 9.0 | 1017 | 0.1252 | 0.9684 | 0.9474 | 0.9441 | 0.9457 |
70
+ | 0.1757 | 10.0 | 1130 | 0.1101 | 0.9736 | 0.9592 | 0.9506 | 0.9548 |
71
 
72
 
73
  ### Framework versions