File size: 2,036 Bytes
49ffc48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: led-base-16384-100-MDS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# led-base-16384-100-MDS

This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1425
- Rouge1: 16.7324
- Rouge2: 5.8501
- Rougel: 13.908
- Rougelsum: 13.8469
- Gen Len: 20.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 25   | 3.6187          | 15.1426 | 4.2468 | 13.4488 | 13.38     | 20.0    |
| No log        | 2.0   | 50   | 3.9873          | 13.4341 | 3.3283 | 10.2739 | 10.8229   | 20.0    |
| No log        | 3.0   | 75   | 4.0264          | 18.1891 | 5.3395 | 15.0797 | 15.3586   | 20.0    |
| No log        | 4.0   | 100  | 4.0929          | 17.0091 | 5.5336 | 14.4381 | 14.5149   | 19.5    |
| No log        | 5.0   | 125  | 4.1425          | 16.7324 | 5.8501 | 13.908  | 13.8469   | 20.0    |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.2
- Datasets 1.18.3
- Tokenizers 0.11.0